Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Apr 6;27(2):115–122. doi: 10.1007/s12264-011-1205-3

Monocytes and Alzheimer’s disease

单核细胞和阿尔茨海默病

Yu Feng 1,, Lei Li 1, Xiao-Hong Sun 2
PMCID: PMC5560348  PMID: 21441973

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by extracellular amyloid beta (Aβ) deposition and intracellular neurofibrillary tangle formation. Monocyte is part of the innate immune system and can effectively remove dead cells and debris. It has been suggested that Aβ can recruit monocytes into brain in AD mice, resulting in restriction of cerebral amyloidosis. However, monocyte may act as a double-edged sword, either beneficial (e.g., clearance of Aβ) or detrimental (e.g., secretion of neurotoxic factors). In addition, recent studies indicate that in AD patients, Aβ phagocytosis by monocytes is ineffective. The present review mainly summarized the current knowledge on monocytes and their potential roles in AD.

Keywords: Alzheimer’s disease, amyloid beta, monocyte, inflammation, neurotoxic factors

References

  • [1].Selkoe D.J. Defining molecular targets to prevent Alzheimer disease. Arch Neurol. 2005;62(2):192–195. doi: 10.1001/archneur.62.2.192. [DOI] [PubMed] [Google Scholar]
  • [2].Parihar M.S., Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004;11(5):456–467. doi: 10.1016/j.jocn.2003.12.007. [DOI] [PubMed] [Google Scholar]
  • [3].Samandouras G., Teddy P.J., Cadoux-Hudson T., Ansorge O. Amyloid in neurosurgical and neurological practice. J Clin Neurosci. 2006;13(2):159–167. doi: 10.1016/j.jocn.2005.05.009. [DOI] [PubMed] [Google Scholar]
  • [4].Zlokovic B.V., Yamada S., Holtzman D., Ghiso J., Frangione B. Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med. 2000;6(7):718–719. doi: 10.1038/77397. [DOI] [PubMed] [Google Scholar]
  • [5].Seta N., Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J Med. 2007;56(2):41–47. doi: 10.2302/kjm.56.41. [DOI] [PubMed] [Google Scholar]
  • [6].Fiala M., Lin J., Ringman J., Kermani-Arab V., Tsao G., Patel A., et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005;7(3):221–232. doi: 10.3233/jad-2005-7304. [DOI] [PubMed] [Google Scholar]
  • [7].Hickman S.E., El Khoury J. Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9(2):168–173. doi: 10.2174/187152710791011982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Whitelaw D.M., Batho H.F. The distribution of monocytes in the rat. Cell Tissue Kinet. 1972;5(3):215–225. doi: 10.1111/j.1365-2184.1972.tb00360.x. [DOI] [PubMed] [Google Scholar]
  • [9].Fogg D.K., Sibon C., Miled C., Jung S., Aucouturier P., Littman D.R., et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311(5757):83–87. doi: 10.1126/science.1117729. [DOI] [PubMed] [Google Scholar]
  • [10].Whitelaw D.M. Observations on human monocyte kinetics after pulse labeling. Cell Tissue Kinet. 1972;5(4):311–317. doi: 10.1111/j.1365-2184.1972.tb00369.x. [DOI] [PubMed] [Google Scholar]
  • [11].Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–964. doi: 10.1038/nri1733. [DOI] [PubMed] [Google Scholar]
  • [12].Stöhr J., Schindler G., Rothe G., Schmitz G. Enhanced upregulation of the Fc gamma receptor IIIa (CD16a) during in vitro differentiation of ApoE4/4 monocytes. Arterioscler Thromb Vasc Biol. 1998;18(9):1424–1432. doi: 10.1161/01.atv.18.9.1424. [DOI] [PubMed] [Google Scholar]
  • [13].Rothe G., Herr A.S., Stohr J., Abletshauser C., Weidinger G., Schmitz G. A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease. Atherosclerosis. 1999;144(1):251–261. doi: 10.1016/S0021-9150(99)00061-1. [DOI] [PubMed] [Google Scholar]
  • [14].Schmitz G., Orso E., Rothe G., Klucken J. Scavenging, signalling and adhesion coupling in macrophages: implications for atherogenesis. Curr Opin Lipidol. 1997;8(5):287–300. doi: 10.1097/00041433-199710000-00008. [DOI] [PubMed] [Google Scholar]
  • [15].Schmitz G., Leuthauser-Jaschinski K., Orso E. Are circulating monocytes as microglia orthologues appropriate biomarker targets for neuronal diseases? Cent Nerv Syst Agents Med Chem. 2009;9(4):307–330. doi: 10.2174/187152409789630424. [DOI] [PubMed] [Google Scholar]
  • [16].Lutter D., Ugocsai P., Grandl M., Orso E., Theis F., Lang E.W., et al. Analyzing M-CSF dependent monocyte/macrophage differentiation: expression modes and meta-modes derived from an independent component analysis. BMC Bioinformatics. 2008;9:100. doi: 10.1186/1471-2105-9-100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Delamarre L., Pack M., Chang H., Mellman I., Trombetta E.S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307(5715):1630–1634. doi: 10.1126/science.1108003. [DOI] [PubMed] [Google Scholar]
  • [18].Colton C.A., Wilcock D.M. Assessing activation states in microglia. CNS Neurol Disord Drug Targets. 2010;9(2):174–191. doi: 10.2174/187152710791012053. [DOI] [PubMed] [Google Scholar]
  • [19].Woollard K.J., Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7(2):77–86. doi: 10.1038/nrcardio.2009.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Kimura S., Sawada T. Understanding the essential role of monocytes in atherosclerosis. Circ J. 2010;74(7):1292–1293. doi: 10.1253/circj.CJ-10-0469. [DOI] [PubMed] [Google Scholar]
  • [21].Nilsson J., Nordin Fredrikson G., Schiopu A., Shah P.K., Jansson B., Carlsson R. Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease. Curr Pharm Des. 2007;13(10):1021–1030. doi: 10.2174/138161207780487557. [DOI] [PubMed] [Google Scholar]
  • [22].Randolph G.J. The fate of monocytes in atherosclerosis. J Thromb Haemost. 2009;7(Suppl1):28–30. doi: 10.1111/j.1538-7836.2009.03423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Chang C.C., Wright A., Punnonen J. Monocyte-derived CD1a+ and CD1a− dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J Immunol. 2000;165(7):3584–3591. doi: 10.4049/jimmunol.165.7.3584. [DOI] [PubMed] [Google Scholar]
  • [24].Lawson L.J., Perry V.H., Dri P., Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–170. doi: 10.1016/0306-4522(90)90229-W. [DOI] [PubMed] [Google Scholar]
  • [25].Graeber M.B., Streit W.J. Perivascular microglia defined. Trends Neurosci. 1990;13(9):366. doi: 10.1016/0166-2236(90)90020-B. [DOI] [PubMed] [Google Scholar]
  • [26].Soulet D., Rivest S. Microglia. Curr Biol. 2008;18(12):R506–508. doi: 10.1016/j.cub.2008.04.047. [DOI] [PubMed] [Google Scholar]
  • [27].Schlachetzki J.C., Hull M. Microglial activation in Alzheimer’s disease. Curr Alzheimer Res. 2009;6(6):554–563. doi: 10.2174/156720509790147179. [DOI] [PubMed] [Google Scholar]
  • [28].Aarum J., Sandberg K., Haeberlein S.L., Persson M.A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A. 2003;100(26):15983–15988. doi: 10.1073/pnas.2237050100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Walton M.R., Gibbons H., MacGibbon G.A., Sirimanne E., Saura J., Gluckman P.D., et al. PU.1 expression in microglia. J Neuroimmunol. 2000;104(2):109–115. doi: 10.1016/S0165-5728(99)00262-3. [DOI] [PubMed] [Google Scholar]
  • [30].Ladeby R., Wirenfeldt M., Dalmau I., Gregersen R., Garcia-Ovejero D., Babcock A., et al. Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia. 2005;50(2):121–131. doi: 10.1002/glia.20159. [DOI] [PubMed] [Google Scholar]
  • [31].Chan W.Y., Kohsaka S., Rezaie P. The origin and cell lineage of microglia: new concepts. Brain Res Rev. 2007;53(2):344–354. doi: 10.1016/j.brainresrev.2006.11.002. [DOI] [PubMed] [Google Scholar]
  • [32].Streit W.J. Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci. 2010;2:22. doi: 10.3389/fnagi.2010.00022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Ajami B., Bennett J.L., Krieger C., Tetzlaff W., Rossi F.M. Local selfrenewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10(12):1538–1543. doi: 10.1038/nn2014. [DOI] [PubMed] [Google Scholar]
  • [34].D’Mello C., Le T., Swain M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–2102. doi: 10.1523/JNEUROSCI.3567-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Soulet D., Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol. 2008;8(4):508–518. doi: 10.1016/j.coph.2008.04.002. [DOI] [PubMed] [Google Scholar]
  • [36].Shechter R., London A., Varol C., Raposo C., Cusimano M., Yovel G., et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 2009;6(7):e1000113. doi: 10.1371/journal.pmed.1000113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239(4837):290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  • [38].Stoll G., Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol. 1999;58(3):233–247. doi: 10.1016/S0301-0082(98)00083-5. [DOI] [PubMed] [Google Scholar]
  • [39].Pilling D., Fan T., Huang D., Kaul B., Gomer R.H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4(10):e7475. doi: 10.1371/journal.pone.0007475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].El Khoury J., Toft M., Hickman S.E., Means T.K., Terada K., Geula C., et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13(4):432–438. doi: 10.1038/nm1555. [DOI] [PubMed] [Google Scholar]
  • [41].Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gammatreated microglial cells. Eur J Immunol. 1987;17(9):1271–1278. doi: 10.1002/eji.1830170909. [DOI] [PubMed] [Google Scholar]
  • [42].Panek R.B., Benveniste E.N. Class II MHC gene expression in microglia. Regulation by the cytokines IFN-gamma, TNF-alpha, and TGF-beta. J Immunol. 1995;154(6):2846–2854. [PubMed] [Google Scholar]
  • [43].Shrikant P., Weber E., Jilling T., Benveniste E.N. Intercellular adhesion molecule-1 gene expression by glial cells. Differential mechanisms of inhibition by IL-10 and IL-6. J Immunol. 1995;155(3):1489–1501. [PubMed] [Google Scholar]
  • [44].Banati R.B., Gehrmann J., Czech C., Monning U., Jones L.L., Konig G., et al. Early and rapid de novo synthesis of Alzheimer beta A4-amyloid precursor protein (APP) in activated microglia. Glia. 1993;9(3):199–210. doi: 10.1002/glia.440090305. [DOI] [PubMed] [Google Scholar]
  • [45].Simard A.R., Soulet D., Gowing G., Julien J.P., Rivest S. Bone marrowderived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502. doi: 10.1016/j.neuron.2006.01.022. [DOI] [PubMed] [Google Scholar]
  • [46].Town T., Laouar Y., Pittenger C., Mori T., Szekely C.A., Tan J., et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med. 2008;14(6):681–687. doi: 10.1038/nm1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Guerreiro R.J., Santana I., Bras J.M., Santiago B., Paiva A., Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis. 2007;4(6):406–412. doi: 10.1159/000107700. [DOI] [PubMed] [Google Scholar]
  • [48].Heneka M.T., Sastre M., Dumitrescu-Ozimek L., Dewachter I., Walter J., Klockgether T., et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation. 2005;2:22. doi: 10.1186/1742-2094-2-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Meyer-Luehmann M., Spires-Jones T.L., Prada C., Garcia-Alloza M., de Calignon A., Rozkalne A., et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 2008;451(7179):720–724. doi: 10.1038/nature06616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].McGeer P.L., McGeer E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev. 1995;21(2):195–218. doi: 10.1016/0165-0173(95)00011-9. [DOI] [PubMed] [Google Scholar]
  • [51].Grathwohl S.A., Kalin R.E., Bolmont T., Prokop S., Winkelmann G., Kaeser S.A., et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci. 2009;12(11):1361–1363. doi: 10.1038/nn.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Sanchez-Ramos J., Song S., Sava V., Catlow B., Lin X., Mori T., et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163(1):55–72. doi: 10.1016/j.neuroscience.2009.05.071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Conductier G., Blondeau N., Guyon A., Nahon J.L., Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010;244(1):93–100. doi: 10.1016/j.jneuroim.2010.05.010. [DOI] [PubMed] [Google Scholar]
  • [54].Breitner J.C., Welsh K.A., Helms M.J., Gaskell P.C., Gau B.A., Roses A.D., et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging. 1995;16(4):523–530. doi: 10.1016/0197-4580(95)00049-K. [DOI] [PubMed] [Google Scholar]
  • [55].Mackenzie I.R., Hao C., Munoz D.G. Role of microglia in senile plaque formation. Neurobiol Aging. 1995;16(5):797–804. doi: 10.1016/0197-4580(95)00092-S. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES