Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Jun 4;27(3):197. doi: 10.1007/s12264-011-1004-x

A review of psychostimulant-induced neuroadaptation in developing animals

动物发育过程中施予精神兴奋剂引起的神经系统适应性

Normand Carrey 1,3,, Michael Wilkinson 2,3
PMCID: PMC5560359  PMID: 21614102

Abstract

The effects of clinically relevant doses of commonly prescribed stimulants methylphenidate (MPH), d-amphetamine (d-AMPH), and dl-AMPH or mixed amphetamine salts (MAS) such as Adderall, on short- and long-term gene neuroadaptations in developing animals have not been widely investigated. In the present review, the effects of oral stimulant administration were compared with those of the subcutaneous or intra-peritoneal route. A selective set of studies between 1979 and 2010, which incorporated in their design developmental period, clinically relevant doses of stimulants, and repeated daily doses were reviewed. These studies indicate that neuroadaptation to chronic stimulants includes blunting of stimulated immediate early gene expression, sensitivity of younger (prepubertal) brain to smaller dosages of stimulants, and the persistence of some effects, especially behavioral neuroadaptations, into adulthood. In addition, oral amphetamines (MAS) have more profound effects than does oral MPH. Further animal developmental studies are required to understand potential long-term neuroadaptations to low, daily oral doses of stimulants. Implications for clinical practice were also discussed.

Keywords: psychostimulants, animal development, gene expression, enduring effects

References

  • [1].Andersen S.L. Stimulants and the developing brain. Trends Pharmacol Sci. 2005;26:237–243. doi: 10.1016/j.tips.2005.03.009. [DOI] [PubMed] [Google Scholar]
  • [2].Zito J.M., Safer D.J., dosReis S., Gardner J.F., Boles M., Lynch F. Trends in the prescribing of psychotropic medications to preschoolers. JAMA. 2000;283:1025–1030. doi: 10.1001/jama.283.8.1025. [DOI] [PubMed] [Google Scholar]
  • [3].Mayes R., Bagwell C., Erkulwater J. ADHD and the rise in stimulant use among children. Harv Rev Psychiatry. 2008;16:151–166. doi: 10.1080/10673220802167782. [DOI] [PubMed] [Google Scholar]
  • [4].Swanson J.M., Kinsbourne M., Nigg J., Lanphear B., Stefanatos G.A., Volkow N., et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev. 2007;17:39–59. doi: 10.1007/s11065-007-9019-9. [DOI] [PubMed] [Google Scholar]
  • [5].Berman S.M., Kuscenski R., McCracken J.T., London E.D. Potential adverse effects of amphetamine treatment on brain and behavior: a review. Molecular Psychiatry. 2009;14:123–142. doi: 10.1038/mp.2008.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Swanson J.M., Volkow N.D. Increasing use of stimulants warns of potential abuse. Nature. 2008;453:586. doi: 10.1038/453586a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Teicher M.H., Ito Y., Glod C.A., Barber N.I. Objective measurement of hyperactivity and attentional problems in ADHD. J Am Acad Child Adolesc Psychiatry. 1996;35:334–342. doi: 10.1097/00004583-199603000-00015. [DOI] [PubMed] [Google Scholar]
  • [8].Benes F.M. Brain development, VII. Human brain growth spans decades. Am J Psychiatry. 1998;155:1489. doi: 10.1176/ajp.155.11.1489. [DOI] [PubMed] [Google Scholar]
  • [9].McClung C.A., Nestler E.J. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology. 2008;33:3–17. doi: 10.1038/sj.npp.1301544. [DOI] [PubMed] [Google Scholar]
  • [10].Swanson J.M., Volkow N.D. Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res. 2002;130:73–78. doi: 10.1016/S0166-4328(01)00433-8. [DOI] [PubMed] [Google Scholar]
  • [11].Kuczenski R., Segal D.S. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci. 2002;22:7264–7271. doi: 10.1523/JNEUROSCI.22-16-07264.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Wheeler T.L., Eppolito A.K., Smith L.N., Huff T.B., Smith R.F. A novel method for oral stimulant administration in the neonate rat and similar species. J Neurosci Methods. 2007;159:282–285. doi: 10.1016/j.jneumeth.2006.07.019. [DOI] [PubMed] [Google Scholar]
  • [13].Chase T., Carrey N., Soo E., Wilkinson M. Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neuroscience. 2007;144:969–984. doi: 10.1016/j.neuroscience.2006.10.035. [DOI] [PubMed] [Google Scholar]
  • [14].Gatley S.J., Volkow N.D., Gifford A.N., Fowler J.S., Dewey S.L., Ding Y.S., et al. Dopamine-transporter occupancy after intravenous doses of cocaine and methylphenidate in mice and humans. Psychopharmacology (Berl) 1999;146:93–100. doi: 10.1007/s002130051093. [DOI] [PubMed] [Google Scholar]
  • [15].Gerasimov M.R., Franceschi M., Volkow N.D., Gifford A., Gatley S.J., Marsteller D., et al. Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study. J Pharmacol Exp Ther. 2000;295:51–57. [PubMed] [Google Scholar]
  • [16].Volkow N.D., Insel T.R. What are the long-term effects of methylphenidate treatment? Biol Psychiatry. 2003;54:1307–1309. doi: 10.1016/j.biopsych.2003.10.019. [DOI] [PubMed] [Google Scholar]
  • [17].Kuczenski R., Segal D.S. Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry. 2005;57:1391–1396. doi: 10.1016/j.biopsych.2004.12.036. [DOI] [PubMed] [Google Scholar]
  • [18].Allen K., Wilkinson M., Chase T., Soo E., Hui J., Carrey N. Chronic low dose Adderall XR down-regulates c-fos expression in infantile and prepubertal rat striatum and cortex. Neuroscience. 2010;169:1901–1912. doi: 10.1016/j.neuroscience.2010.06.029. [DOI] [PubMed] [Google Scholar]
  • [19].Yano M., Steiner H. Methylphenidate and cocaine: the same effects on gene regulation? Trends Pharmacol Sci. 2007;28:588–596. doi: 10.1016/j.tips.2007.10.004. [DOI] [PubMed] [Google Scholar]
  • [20].Morgan J.I., Curran T. Immediate-early genes: ten years on. Trends Neurosci. 1995;18:66–67. doi: 10.1016/0166-2236(95)93874-W. [DOI] [PubMed] [Google Scholar]
  • [21].Morgan J.I., Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14:421–451. doi: 10.1146/annurev.ne.14.030191.002225. [DOI] [PubMed] [Google Scholar]
  • [22].Hughes P., Dragunow M. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev. 1995;47:133–178. [PubMed] [Google Scholar]
  • [23].Alcantara A.A., Greenough W.T. Developmental regulation of Fos and Fos-related antigens in cerebral cortex, striatum, hippocampus, and cerebellum of the rat. J Comp Neurol. 1993;334:75–85. doi: 10.1002/cne.903340106. [DOI] [PubMed] [Google Scholar]
  • [24].Andersen S.L., LeBlanc C.J., Lyss P.J. Maturational increases in c-fos expression in the ascending dopamine systems. Synapse. 2001;41:345–350. doi: 10.1002/syn.1091. [DOI] [PubMed] [Google Scholar]
  • [25].Cotterly L., Beverley J.A., Yano M., Steiner H. Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a. Eur J Neurosci. 2007;25:3617–3628. doi: 10.1111/j.1460-9568.2007.05570.x. [DOI] [PubMed] [Google Scholar]
  • [26].Szumlinski K.K., Kalivas P.W., Worley P.F. Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol. 2006;16:251–257. doi: 10.1016/j.conb.2006.05.002. [DOI] [PubMed] [Google Scholar]
  • [27].Kuczenski R., Segal D.S. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem. 1997;68:2032–2037. doi: 10.1046/j.1471-4159.1997.68052032.x. [DOI] [PubMed] [Google Scholar]
  • [28].Schiffer W.K., Volkow N.D., Fowler J.S., Alexoff D.L., Logan J., Dewey S.L. Therapeutic doses of amphetamine or methylphenidate differentially increase synaptic and extracellular dopamine. Synapse. 2006;59:243–251. doi: 10.1002/syn.20235. [DOI] [PubMed] [Google Scholar]
  • [29].Easton N., Steward C., Marshall F., Fone K., Marsden C. Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007;52:405–414. doi: 10.1016/j.neuropharm.2006.07.035. [DOI] [PubMed] [Google Scholar]
  • [30].Brandon C.L., Steiner H. Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci. 2003;18:1584–1592. doi: 10.1046/j.1460-9568.2003.02892.x. [DOI] [PubMed] [Google Scholar]
  • [31].Chase TD, Brown RE, Carrey N, Wilkinson M. Repeated methylphenidate attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 14: 769–772. [DOI] [PubMed]
  • [32].Chase T.D., Carrey N., Brown R.E., Wilkinson M. Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature brain. Brain Res Dev Brain Res. 2005;156:1–12. doi: 10.1016/j.devbrainres.2005.01.011. [DOI] [PubMed] [Google Scholar]
  • [33].Chase T.D., Carrey N., Brown R.E., Wilkinson M. Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum. Brain Res Dev Brain Res. 2005;157:181–191. doi: 10.1016/j.devbrainres.2005.04.003. [DOI] [PubMed] [Google Scholar]
  • [34].Hawken C.M., Brown R.E., Carrey N., Wilkinson M. Long-term methylphenidate treatment downregulates c-fos in the striatum of male CD-1 mice. Neuroreport. 2004;15:1045–1048. doi: 10.1097/00001756-200404290-00022. [DOI] [PubMed] [Google Scholar]
  • [35].Perrotti L.I., Weaver R.R., Robison B., Renthal W., Maze I., Yazdani S., et al. Distinct patterns of DeltaFosB induction in brain by drugs of abuse. Synapse. 2008;62:358–369. doi: 10.1002/syn.20500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Chen J., Kelz M.B., Hope B.T., Nakabeppu Y., Nestler E.J. Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. J Neurosci. 1997;17:4933–4941. doi: 10.1523/JNEUROSCI.17-13-04933.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Hope B.T., Nye H.E., Kelz M.B., Self D.W., Iadarola M.J., Nakabeppu Y. Induction of a long-lasting AP-1 complex composed of altered Foslike proteins in brain by chronic cocaine and other chronic treatments. Neuron. 1994;13:1235–1244. doi: 10.1016/0896-6273(94)90061-2. [DOI] [PubMed] [Google Scholar]
  • [38].McClung C.A., Ulery P.G., Perrotti L.I., Zachariou V., Berton O., Nestler E.J. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res. 2004;132:146–154. doi: 10.1016/j.molbrainres.2004.05.014. [DOI] [PubMed] [Google Scholar]
  • [39].Snyder-Keller A., Keller R.W., Jr Stimulant-mediated c-fos induction in striatum as a function of age, sex, and prenatal cocaine exposure. Brain Res. 1998;794:88–95. doi: 10.1016/S0006-8993(98)00226-1. [DOI] [PubMed] [Google Scholar]
  • [40].Ehrlich M.E., Sommer J., Canas E., Unterwald E.M. Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. J Neurosci. 2002;22:9155–9159. doi: 10.1523/JNEUROSCI.22-21-09155.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Tzingounis A.V., Nicoll R.A. Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron. 2006;52:403–407. doi: 10.1016/j.neuron.2006.10.016. [DOI] [PubMed] [Google Scholar]
  • [42].Steward O., Worley P. Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol Learn Mem. 2002;78:508–527. doi: 10.1006/nlme.2002.4102. [DOI] [PubMed] [Google Scholar]
  • [43].Wang H., Pickel V.M. Activity-regulated cytoskeleton-associated protein arc is targeted to dendrites and coexpressed with mu-opioid receptors in postnatal rat caudate-putamen nucleus. J Neurosci Res. 2004;77:323–333. doi: 10.1002/jnr.20173. [DOI] [PubMed] [Google Scholar]
  • [44].Huang E.J., Reichardt L.F. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–642. doi: 10.1146/annurev.biochem.72.121801.161629. [DOI] [PubMed] [Google Scholar]
  • [45].Meredith G.E., Callen S., Scheuer D.A. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 2002;949:218–227. doi: 10.1016/S0006-8993(02)03160-8. [DOI] [PubMed] [Google Scholar]
  • [46].Bramham C.R., Messaoudi E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog Neurobiol. 2005;76:99–125. doi: 10.1016/j.pneurobio.2005.06.003. [DOI] [PubMed] [Google Scholar]
  • [47].Le Foll B., Diaz J., Sokoloff P. A single cocaine exposure increases BDNF and D3 receptor expression: implications for drug-conditioning. Neuroreport. 2005;16:175–178. doi: 10.1097/00001756-200502080-00022. [DOI] [PubMed] [Google Scholar]
  • [48].Thomas D.M., Francescutti-Verbeem D.M., Liu X., Kuhn D.M. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment—an oligonucleotide microarray approach. J Neurochem. 2004;88:380–393. doi: 10.1046/j.1471-4159.2003.02182.x. [DOI] [PubMed] [Google Scholar]
  • [49].Kernie S.G., Liebl D.J., Parada L.F. BDNF regulates eating behavior and locomotor activity in mice. Embo J. 2000;19:1290–1300. doi: 10.1093/emboj/19.6.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Rios M., Fan G., Fekete C., Kelly J., Bates B., Kuehn R., et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001;15:1748–1757. doi: 10.1210/me.15.10.1748. [DOI] [PubMed] [Google Scholar]
  • [51].Zorner B., Wolfer D.P., Brandis D., Kretz O., Zacher C., Madani R., et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than “depressive”. Biol Psychiatry. 2003;54:972–982. doi: 10.1016/S0006-3223(03)00418-9. [DOI] [PubMed] [Google Scholar]
  • [52].Banerjee P.S., Zetterstrom T.S.C. Chronic methylphenidate administration inhibits brain-derived neurotrophic factor gene expression in juvenile rat brain. Pro Br Pharmacol Soc. 2008;5:7. [Google Scholar]
  • [53].Banerjee P.S., Zetterstrom T.S. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience; 2008. Effects of methylphenidate on brain-derived Neurotrophic Factor protein levels in juvenile rat brain. Program No. 746.6/X8. [Google Scholar]
  • [54].Alder J., Thakker-Varia S., Bangasser D.A., Kuroiwa M., Plummer M.R., Shors T.J., et al. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J Neurosci. 2003;23:10800–10808. doi: 10.1523/JNEUROSCI.23-34-10800.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [55].Perlmann T., Wallen-Mackenzie A. Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res. 2004;318:45–52. doi: 10.1007/s00441-004-0974-7. [DOI] [PubMed] [Google Scholar]
  • [56].Muller K., Bauer L., Fischer M., Barkley R., Navia B. Identification and characterization of human NR4A2 polymorphisms in ADHD. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:57–63. doi: 10.1002/ajmg.b.30127. [DOI] [PubMed] [Google Scholar]
  • [57].Rojas P., Joodmardi E., Hong Y., Perlmann T., Ogren S.O. Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol Psychiatry. 2007;12:756–766. doi: 10.1038/sj.mp.4001993. [DOI] [PubMed] [Google Scholar]
  • [58].Sacchetti P., Mitchell T.R., Granneman J.G., Bannon M.J. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem. 2001;76:1565–1572. doi: 10.1046/j.1471-4159.2001.00181.x. [DOI] [PubMed] [Google Scholar]
  • [59].Jankovic J., Chen S., Le W.D. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol. 2005;77:128–138. doi: 10.1016/j.pneurobio.2005.09.001. [DOI] [PubMed] [Google Scholar]
  • [60].Bannon M.J., Pruetz B., Manning-Bog A.B., Whitty C.J., Michelhaugh S.K., Sacchetti P., et al. Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proc Natl Acad Sci U S A. 2002;99:6382–6385. doi: 10.1073/pnas.092654299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Leo D., di Porzio U., Racagni G., Riva M.A., Fumagalli F., Perrone-Capano C. Chronic cocaine administration modulates the expression of transcription factors involved in midbrain dopaminergic neuron function. Exp Neurol. 2007;203:472–480. doi: 10.1016/j.expneurol.2006.08.024. [DOI] [PubMed] [Google Scholar]
  • [62].Zehle S., Bock J., Jezierski G., Gruss M., Braun K. Methylphenidate treatment recovers stress-induced elevated dendritic spine densities in the rodent dorsal anterior cingulate cortex. Dev Neurobiol. 2007;67:1891–1900. doi: 10.1002/dneu.20543. [DOI] [PubMed] [Google Scholar]
  • [63].Diaz Heijtz R., Kolb B., Forssberg H. Can a therapeutic dose of amphetamine during pre-adolescence modify the pattern of synaptic organization in the brain? Eur J Neurosci. 2003;18:3394–3399. doi: 10.1046/j.0953-816X.2003.03067.x. [DOI] [PubMed] [Google Scholar]
  • [64].Mueller D., Chapman C.A., Stewart J. Amphetamine induces dendritic growth in ventral tegmental area dopaminergic neurons in vivo via basic fibroblast growth factor. Neuroscience. 2006;137:727–735. doi: 10.1016/j.neuroscience.2005.09.038. [DOI] [PubMed] [Google Scholar]
  • [65].Gray J.D., Punsoni M., Tabori N.E., Melton J.T., Fanslow V., Ward M.J., et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J Neurosci. 2007;27:7196–7207. doi: 10.1523/JNEUROSCI.0109-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Renthal W., Nestler E.J. Epigenetic mechanisms in drug addiction. Trends Mol Med. 2008;14:341–350. doi: 10.1016/j.molmed.2008.06.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Kumar A., Choi K.H., Renthal W., Tsankova N.M., Theobald D.E., Truong H.T., et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron. 2005;48:303–314. doi: 10.1016/j.neuron.2005.09.023. [DOI] [PubMed] [Google Scholar]
  • [68].Renthal W., Carle T.L., Maze I., Covington H.E., 3rd, Truong H.T., Alibhai I., et al. Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci. 2008;28:7344–7349. doi: 10.1523/JNEUROSCI.1043-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Shen H.Y., Kalda A., Yu L., Ferrara J., Zhu J., Chen J.F. Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience. 2008;157(3):644–655. doi: 10.1016/j.neuroscience.2008.09.019. [DOI] [PubMed] [Google Scholar]
  • [70].Meaney M.J., Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci. 2005;28:456–463. doi: 10.1016/j.tins.2005.07.006. [DOI] [PubMed] [Google Scholar]
  • [71].Steiner H., Gerfen C.R. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res. 1998;123:60–76. doi: 10.1007/s002210050545. [DOI] [PubMed] [Google Scholar]
  • [72].McGinty J.F. Co-localization of GABA with other neuroactive substances in the basal ganglia. Prog Brain Res. 2007;160:273–284. doi: 10.1016/S0079-6123(06)60016-2. [DOI] [PubMed] [Google Scholar]
  • [73].Adriani W., Leo D., Greco D., Rea M., di Porzio U., Laviola G., et al. Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology. 2006;31:1946–1956. doi: 10.1038/sj.npp.1300962. [DOI] [PubMed] [Google Scholar]
  • [74].David H.N., Ansseau M., Abraini J.H. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudateputamen and nucleus accumbens of “intact” animals. Brain Res Brain Res Rev. 2005;50:336–360. doi: 10.1016/j.brainresrev.2005.09.002. [DOI] [PubMed] [Google Scholar]
  • [75].Collingridge G.L., Isaac J.T., Wang Y.T. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004;5:952–962. doi: 10.1038/nrn1556. [DOI] [PubMed] [Google Scholar]
  • [76].Andersen S.L., Arvanitogiannis A., Pliakas A.M., LeBlanc C., Carlezon W.A., Jr Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci. 2002;5:13–14. doi: 10.1038/nn777. [DOI] [PubMed] [Google Scholar]
  • [77].Krause J. SPECT and PET of the dopamine transporter in attentiondeficit/hyperactivity disorder. Expert Rev Neurother. 2008;8:611–625. doi: 10.1586/14737175.8.4.611. [DOI] [PubMed] [Google Scholar]
  • [78].Nikolaus S., Antke C., Beu M., Kley K., Larisch R., Wirrwar A. In vivo quantification of dose-dependent dopamine transporter blockade in the rat striatum with small animal SPECT. Nucl Med Commun. 2007;28:207–213. doi: 10.1097/MNM.0b013e328014a0df. [DOI] [PubMed] [Google Scholar]
  • [79].Moll G.H., Hause S., Ruther E., Rothenberger A., Huether G. Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol. 2001;11:15–24. doi: 10.1089/104454601750143366. [DOI] [PubMed] [Google Scholar]
  • [80].Feron F.J., Hendriksen J.G., van Kroonenburgh M.J., Blom-Coenjaerts C., Kessels A.G., Jolles J., et al. Dopamine transporter in attentiondeficit hyperactivity disorder normalizes after cessation of methylphenidate. Pediatr Neurol. 2005;33:179–183. doi: 10.1016/j.pediatrneurol.2005.04.008. [DOI] [PubMed] [Google Scholar]
  • [81].Carlezon W.A., Jr., Konradi C. Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules. Neuropharmacology. 2004;47Suppl1:47–60. doi: 10.1016/j.neuropharm.2004.06.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [82].Brandon C.L., Marinelli M., Baker L.K., White F.J. Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology. 2001;25:651–661. doi: 10.1016/S0893-133X(01)00281-0. [DOI] [PubMed] [Google Scholar]
  • [83].Carlezon W.A., Jr., Mague S.D., Andersen S.L. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry. 2003;54:1330–1337. doi: 10.1016/j.biopsych.2003.08.020. [DOI] [PubMed] [Google Scholar]
  • [84].Mague S.D., Andersen S.L., Carlezon W.A., Jr. Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats. Biol Psychiatry. 2005;57:120–125. doi: 10.1016/j.biopsych.2004.10.037. [DOI] [PubMed] [Google Scholar]
  • [85].Bolanos C.A., Barrot M., Berton O., Wallace-Black D., Nestler E.J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry. 2003;54:1317–1329. doi: 10.1016/S0006-3223(03)00570-5. [DOI] [PubMed] [Google Scholar]
  • [86].Bolanos C.A., Willey M.D., Maffeo M.L., Powers K.D., Kinka D.W., Grausam K.B. Antidepressant treatment can normalize adult behavioral deficits induced by early-life exposure to methylphenidate. Biol Psychiatry. 2008;63:309–316. doi: 10.1016/j.biopsych.2007.06.024. [DOI] [PubMed] [Google Scholar]
  • [87].Andersen S.L., Napierata L., Brenhouse H.C., Sonntag K.C. Juvenile methylphenidate modulates reward-related behaviors and cerebral blood flow by decreasing cortical D3 receptors. Eur J Neurosci. 2008;27:2962–2972. doi: 10.1111/j.1460-9568.2008.06254.x. [DOI] [PubMed] [Google Scholar]
  • [88].Achat-Mendes C., Anderson K.L., Itzhak Y. Methylphenidate and MDMA adolescent exposure in mice: long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood. Neuropharmacology. 2003;45:106–115. doi: 10.1016/S0028-3908(03)00135-7. [DOI] [PubMed] [Google Scholar]
  • [89].Guerriero R.M., Hayes M.M., Dhaliwal S.K., Ren J.Q., Kosofsky B.E. Preadolescent methylphenidate versus cocaine treatment differ in the expression of cocaine-induced locomotor sensitization during adolescence and adulthood. Biol Psychiatry. 2006;60:1171–1180. doi: 10.1016/j.biopsych.2006.03.034. [DOI] [PubMed] [Google Scholar]
  • [90].Thanos P.K., Michaelides M., Benveniste H., Wang G.J., Volkow N.D. Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents. Pharmacol Biochem Behav. 2007;87:426–433. doi: 10.1016/j.pbb.2007.05.020. [DOI] [PubMed] [Google Scholar]
  • [91].Wegerer V., Moll G.H., Bagli M., Rothenberger A., Ruther E., Huether G. Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life. J Child Adolesc Psychopharmacol. 1999;9:13–24. doi: 10.1089/cap.1999.9.13. [DOI] [PubMed] [Google Scholar]
  • [92].Rosengarten H., Friedhoff A.J. Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science. 1979;203:1133–1135. doi: 10.1126/science.570724. [DOI] [PubMed] [Google Scholar]
  • [93].Duncan G.E., Criswell H.E., McCown T.J., Paul I.A., Mueller R.A., Breese G.R. Behavioral and neurochemical responses to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine. J Pharmacol Exp Ther. 1987;243:1027–1034. [PubMed] [Google Scholar]
  • [94].Carrey N.J., Dursun S., Clements R., Renton K., Waschbusch D., MacMaster F.P. Noradrenergic and serotonergic neuroendocrine responses in prepubertal, peripubertal, and postpubertal rats pretreated with desipramine and sertraline. J Am Acad Child Adolesc Psychiatry. 2002;41:999–1006. doi: 10.1097/00004583-200208000-00019. [DOI] [PubMed] [Google Scholar]
  • [95].Andersen S.L., Navalta C.P. Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci. 2004;22:423–440. doi: 10.1016/j.ijdevneu.2004.06.002. [DOI] [PubMed] [Google Scholar]
  • [96].Stanwood G.D., Levitt P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol. 2004;4:65–71. doi: 10.1016/j.coph.2003.09.003. [DOI] [PubMed] [Google Scholar]
  • [97].Patrick K.S., Ellington K.R., Breese G.R. Distribution of methylphenidate and p-hydroxymethylphenidate in rats. J Pharmacol Exp Therap. 1984;231:61–65. [PubMed] [Google Scholar]
  • [98].Aoyama T., Kotaki H., Iga T. Dose-dependent kinetics of methylphenidate enantiomers after oral administration of racemic methylphenidate to rats. J Pharmacobiodyn. 1990;13:647–652. doi: 10.1248/bpb1978.13.647. [DOI] [PubMed] [Google Scholar]
  • [99].Huff J.K., Davies M.I. Microdialysis monitoring of methylphenidate in blood and brain co rrelated with changes in dopamine and rat activity. J Pharm Biomed Anal. 2002;29:767–777. doi: 10.1016/S0731-7085(02)00196-6. [DOI] [PubMed] [Google Scholar]
  • [100].Wargin W., Patrick K., Kilts C., Gualtieri C.T., Ellington K., Mueller R.A., et al. Pharmacokinetics of methylphenidate in man, rat and monkey. J Pharmacol Exp Therap. 1983;226:382–386. [PubMed] [Google Scholar]
  • [101].Aoyama T., Kotaki H., Sawada Y., Iga T. Pharmacokinetics and pharmacodynamics of methylphenidate enantiomers in rats. Psychopharmacology (Berl) 1996;127:117–122. doi: 10.1007/BF02805984. [DOI] [PubMed] [Google Scholar]
  • [102].Thai D.L., Yurasits L.N., Rudolph G.R., Perel J.M. Comparative pharmacokinetics and tissue distribution of the d-enantiomers of parasubstituted methylphenidate analogs. Drug Metab Dispos. 1999;27:645–650. [PubMed] [Google Scholar]
  • [103].Beckman D.A., Schneider M., Youreneff M., Tse F.L. Juvenile toxicity assessment of d,l-methylphenidate in rats. Birth Defects Res B Dev Reprod Toxicol. 2008;83:48–67. doi: 10.1002/bdrb.20143. [DOI] [PubMed] [Google Scholar]
  • [104].Bakhtiar R., Tse F.L. Toxicokinetic assessment of methylphenidate (Ritalin(R)) in a 13-week oral (gavage) toxicity study in rats using an enantiomeric liquid chromatography/tandem mass spectrometry assay. Rapid Commun Mass Spectrom. 2003;17:2160–2162. doi: 10.1002/rcm.1167. [DOI] [PubMed] [Google Scholar]
  • [105].Bakhtiar R., Tse F.L. Toxicokinetic assessment of methylphenidate (Ritalin) enantiomers in pregnant rats and rabbits. Biomed Chromatog. 2004;18:275–281. doi: 10.1002/bmc.313. [DOI] [PubMed] [Google Scholar]
  • [106].Wilcox K.M., Zhou Y., Wong D.F., Alexander M., Rahmim A., Hilton J. Blood levels and DA transporter occupancy of orally administered methylphenidate in juvenile rhesus monkeys measured by high resolution PET. Synapse. 2008;62:950–952. doi: 10.1002/syn.20565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [107].Doerge D.R., Fogle C.M., Paule M.G., McCullagh M., Bajic S. Analysis of methylphenidate and its metabolite ritalinic acid in monkey plasma by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2008;14:619–623. doi: 10.1002/(SICI)1097-0231(20000430)14:8<619::AID-RCM916>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • [108].Balcioglu A., Ren J.Q., McCarthy D., Spencer T.J., Biederman J., Bhide P.G. Plasma and brain concentrations of oral therapeutic doses of methylphenidate and their impact on brain monoamine content in mice. Neuropharmacology. 2009;57:687–693. doi: 10.1016/j.neuropharm.2009.07.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [109].Manjanatha M.G., Shelton S.D., Dobrovolsky V.N., Shaddock J.G., Mc-Garrity L.G., Doerge D.R., et al. Pharmacokinetics, dose-range, and mutagenicity studies of methylphenidate hydrochloride in B6C3F1 mice. Environ Mol Mutagen. 2008;49:585–593. doi: 10.1002/em.20407. [DOI] [PubMed] [Google Scholar]
  • [110].Shaywitz S.E., Hunt R.D., Jatlow P., Cohen D.J., Young J.G., Pierce R.N., et al. Psychopharmacology of attention deficit disorder: pharmacokinetic, neuroendocrine, and behavioral measures following acute and chronic treatment with methylphenidate. Pediatrics. 1982;69:688–694. [PubMed] [Google Scholar]
  • [111].Chan Y.P., Swanson J.M., Soldin S.S., Thiessen J.J., Macleod S.M., Logan W. Methylphenidate hydrochloride given with or before breakfast: II. Effects on plasma concentration of methylphenidate and ritalinic acid. Pediatrics. 1983;72:56–59. [PubMed] [Google Scholar]
  • [112].Wigal S.B., Gupta S., Greenhill L., Posner K., Lerner M., Steinhoff K., et al. Pharmacokinetics of methylphenidate in preschoolers with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2007;17:153–164. doi: 10.1089/cap.2007.0043. [DOI] [PubMed] [Google Scholar]
  • [113].Teicher M.H., Polcari A., Foley M., Valente E., McGreenery C.E., Chang W.W., et al. Methylphenidate blood levels and therapeutic response in children with attention-deficit hyperactivity disorder: I. Effects of different dosing regimens. J Child Adolesc Psychopharmacol. 2006;16:416–431. doi: 10.1089/cap.2006.16.416. [DOI] [PubMed] [Google Scholar]
  • [114].Stevens J.R., George R.A., Fusillo S., Stern T.A., Wilens T.E. Plasma methylphenidate concentrations in youths treated with high-dose osmotic release oral system formulation. J Child Adolesc Psychopharmacology. 2010;20:49–54. doi: 10.1089/cap.2008.0128. [DOI] [PubMed] [Google Scholar]
  • [115].Quinn D., Wigal S., Swanson J., Hirsch S., Ottolini Y., Dariani M., et al. Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder. J Amer Acad Child Adolesc Psych. 2004;43:1422–1429. doi: 10.1097/01.chi.0000140455.96946.2b. [DOI] [PubMed] [Google Scholar]
  • [116].Pierce D., Dixon C.M., Wigal S.B., McGough J.J. Pharmacokinetics of methylphenidate transdermal system (MTS): results from a laboratory classroom study. J Child Adolesc Psychopharmacol. 2008;18:355–364. doi: 10.1089/cap.2007.0148. [DOI] [PubMed] [Google Scholar]
  • [117].Silveri M.M., Anderson C.M., McNeil J.F., Diaz C.I., Lukas S.E., Mendelson J.H., et al. Oral methylphenidate challenge selectively decreases putaminal T2 in healthy subjects. Drug Alcohol Depend. 2004;76:173–180. doi: 10.1016/j.drugalcdep.2004.04.016. [DOI] [PubMed] [Google Scholar]
  • [118].Parasrampuria D.A., Schoedel K.A., Schuller R., Gu J., Ciccone P., Silber S.A., et al. Assessment of pharmacokinetics and pharmacodynamic effects related to abuse potential of a unique oral osmotic-controlled extended-release methylphenidate formulation in humans. J Clin Pharmacol. 2007;47:1476–1488. doi: 10.1177/0091270007308615. [DOI] [PubMed] [Google Scholar]
  • [119].Auiler J.F., Liu K., Lynch J.M., Gelotte C.K. Effect of food on early drug exposure from extended-release stimulants: results from the Concerta, Adderall XR Food Evaluation (CAFE) Study. Curr Med Res Opin. 2003;18:311–316. doi: 10.1185/030079902125000840. [DOI] [PubMed] [Google Scholar]
  • [120].Srinivas N.R., Hubbard J.W., Korchinski E.D., Midha K.K. Enantioselective pharmacokinetics of dl-threo-methylphenidate in humans. Pharm Res. 1993;10:14–21. doi: 10.1023/A:1018956526016. [DOI] [PubMed] [Google Scholar]
  • [121].Markowitz J.S., Straughn A.B., Patrick K.S., DeVane C.L., Pestreich L., Lee J., et al. Pharmacokinetics of methylphenidate after oral administration of two modified-release formulations in healthy adults. Clin Pharmacokinet. 2003;42:393–401. doi: 10.2165/00003088-200342040-00007. [DOI] [PubMed] [Google Scholar]
  • [122].Marchei E., Farré M., Pardo R., Garcia-Algar O., Pellegrini M., Pacifici R., et al. Correlation between methylphenidate and ritalinic acid concentrations in oral fluid and plasma. Clin Chem. 2010;56:585–592. doi: 10.1373/clinchem.2009.138396. [DOI] [PubMed] [Google Scholar]
  • [123].Tuerck D., Wang Y., Maboudian M., Wang Y., Sedek G., Pommier F., et al. Similar bioavailability of dexmethylphenidate extended (bimodal) release, dexmethyl-phenidate immediate release and racemic methylphenidate extended (bimodal) release formulations in man. Int J Clin Pharmacol Therap. 2007;45:662–668. doi: 10.5414/cpp45662. [DOI] [PubMed] [Google Scholar]
  • [124].Ricaurte G.A., Mechan A.O., Yuan J., Hatzidimitriou G., Xie T., Mayne A.H., et al. Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J Pharmacol Exp Ther. 2005;315:91–98. doi: 10.1124/jpet.105.087916. [DOI] [PubMed] [Google Scholar]
  • [125].Wolfe G.W., Bousquet W.F., Schnell R.C. Circadian variations in response to amphetamine and chlorpromazine in the rat. Commun Psychopharmacol. 1977;1:29–37. [PubMed] [Google Scholar]
  • [126].Honecker H., Coper H. Kinetics and metabolism of amphetamine in the brain of rats of different ages. Naunyn Schmiedebergs Arch Pharmacol. 1975;291:111–121. doi: 10.1007/BF00500043. [DOI] [PubMed] [Google Scholar]
  • [127].Brown G.L., Hunt R.D., Ebert M.H., Bunney W.E., Jr., Kopin I.J. Plasma levels of d-amphetamine in hyperactive children. Serial behavior and motor responses. Psychopharmacology (Berl) 1979;62:133–140. doi: 10.1007/BF00427126. [DOI] [PubMed] [Google Scholar]
  • [128].Brown G.L., Ebert M.H., Mikkelsen E.J., Hunt R.D. Behavior and motor activity response in hyperactive children and plasma amphetamine levels following a sustained release preparation. J Am Acad Child Psychiatry. 1980;19:225–239. doi: 10.1016/S0002-7138(09)60699-3. [DOI] [PubMed] [Google Scholar]
  • [129].Greenhill L.L., Swanson J.M., Steinhoff K., Fried J., Posner K., Lerner M., et al. A pharmacokinetic/pharmacodynamic study comparing a single morning dose of adderall to twice-daily dosing in children with ADHD. J Am Acad Child Adolesc Psychiatry. 2003;42:1234–1241. doi: 10.1097/00004583-200310000-00015. [DOI] [PubMed] [Google Scholar]
  • [130].McGough J.J., Biederman J., Greenhill L.L., McCracken J.T., Spencer T.J., Posner K., et al. Pharmacokinetics of SLI381 (ADDERALL XR), an extended-release formulation of Adderall. J Am Acad Child Adolesc Psychiatry. 2003;42:684–691. doi: 10.1097/01.CHI.0000046850.56865.CB. [DOI] [PubMed] [Google Scholar]
  • [131].Kramer W.G., Read S.C., Tran B.V., Zhang Y., Tulloch S.J. Pharmacokinetics of mixed amphetamine salts extended release in adolescents with ADHD. CNS Spectr. 2005;10:6–13. [PubMed] [Google Scholar]
  • [132].Kupietz S.S., Bartlik B., Angrist B., Winsberg B.G. Psychostimulant plasma concentration and learning performance. J Clin Psychopharmacol. 1985;5:293–295. doi: 10.1097/00004714-198510000-00007. [DOI] [PubMed] [Google Scholar]
  • [133].Tulloch S.J., Zhang Y., McLean A., Wolf K.N. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration. Pharmacotherapy. 2002;22:1405–1415. doi: 10.1592/phco.22.16.1405.33687. [DOI] [PubMed] [Google Scholar]
  • [134].Clausen S.B., Read S.C., Tulloch S.J. Single- and multiple-dose pharmacokinetics of an oral mixed amphetamine salts extended-release formulation in adults. CNS Spectr. 2005;10:6–15. [PubMed] [Google Scholar]
  • [135].Ermer J.C., Shojaei A., Pennick M., Anderson C.S., Silverberg A., Youcha S.H. Bioavailability of triple-bead mixed amphetamine salts compared with a dose-augmentation strategy of mixed amphetamine salts extended release plus mixed amphetamine salts immediate release. Curr Med Res Opin. 2007;23:1067–1075. doi: 10.1185/030079907X182095. [DOI] [PubMed] [Google Scholar]
  • [136].Krishnan S.M., Pennick M., Stark J.G. Metabolism, distribution and elimination of lisdexamfetamine dimesylate: open-label, singlecentre, phase I study in healthy adult volunteers. Clin Drug Investig. 2008;28:745–755. doi: 10.2165/0044011-200828120-00002. [DOI] [PubMed] [Google Scholar]
  • [137].Steiner H., Van Waes V., Marinelli M. Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use as cognitive enhancers? Biol Psychiatry. 2010;15(676):592–594. doi: 10.1016/j.biopsych.2009.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES