Abstract
Objective
The functional roles of protein kinase C (PKC) in the neurite outgrowth and nerve regeneration remain controversial. The present study was aimed to investigate the role of PKC in neurite outgrowth, by studying their regulatory effects on neurite elongation in spinal cord neurons in vitro.
Methods
The anterior-horn neurons of spinal cord from embryonic day 14 (E14) Sprague-Dawley (SD) rats were dissociated, purified and cultured in the serum-containing medium. The ratio of membrane-PKC (mPKC) activity to cytoplasm-PKC (cPKC) activity (m/c-PKC) was studied at different time points during culture.
Results
Between 3–11 d of culture, the change of m/c-PKC activity ratio and PKC-βII expression in the neurite were both significantly correlated with neurite outgrowth (r=0.95, P < 0.01; r=0.73, P < 0.01, respectively). Moreover, PMA, an activator of PKC, induced a dramatic elevation in the m/c-PKC activity ratio, accompanied with the increase in neurite length (r=0.99, P < 0.01). In contrast, GF 109203X, an inhibitor of PKC, significantly inhibited neurite elongation, which could not be reversed by PMA.
Conclusion
PKC activity may be important in regulating neurite outgrowth in spinal cord neurons, and βII isoform of PKC probably plays a major role in this process.
Keywords: protein kinase C, spinal cord neurons, neurite outgrowth, in vitro
摘要
目的
关于蛋白激酶C (PKC)在神经元突起生长和神经再生中的作用, 目前仍存有争议。 本研究主要观察PKC对离体培养的脊髓神经元生长的调节作用, 旨在阐明PKC对突起生长的调节作用。
方法
分离纯化胎龄14天(E14)的SD胎鼠的脊髓前角神经元, 进行原代培养, 并检测不同时相点膜/浆PKC活性(m/c-PKC activity)的比值。
结果
神经元培养3–11 d 期间, 神经元内m/c-PKC比值以及PKC-βII在突起中的表达水平均与突起生长呈显著相关关系(r = 0.95, P < 0.01; r = 0.73, P < 0.01)。 此外, PKC激动剂PMA能显著提高m/c-PKC比值, 且与神经突起的生长一致(r = 0.99, P < 0.01)。 而PKC抑制剂GF 109203X 则能显著抑制突起生长, 且不被PMA作用所逆转。
结论
PKC的活性在脊髓神经元突起生长调节中具有重要作用, 其中βII亚型可能扮演重要角色。
关键词: 蛋白激酶C, 脊髓神经元, 突起生长, 离体
References
- [1].Aigner L., Caroni P. Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones. J Cell Biol. 1993;123:417–429. doi: 10.1083/jcb.123.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Benowitz L.I., Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84–91. doi: 10.1016/S0166-2236(96)10072-2. [DOI] [PubMed] [Google Scholar]
- [3].Bonsall J., Rehder V. Regulation of chick dorsal root ganglion growth corn filopodia by protein kinase C. Brain Res. 1999;839:120–132. doi: 10.1016/S0006-8993(99)01725-4. [DOI] [PubMed] [Google Scholar]
- [4].Camu W., Henderson C.E. Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J Neurosci Methods. 1992;44:59–70. doi: 10.1016/0165-0270(92)90114-S. [DOI] [PubMed] [Google Scholar]
- [5].Campenot R.B., Walji A.H., Draker D.D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J Neurosci. 1991;11:1126–1139. doi: 10.1523/JNEUROSCI.11-04-01126.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Campenot R.B., Draker D.D., Sanger D.L. Evidence that protein kinase C activities involved in regulating neurite growth are localized to distal neurites. J Neurochem. 1994;63:868–878. doi: 10.1046/j.1471-4159.1994.63030868.x. [DOI] [PubMed] [Google Scholar]
- [7].Casabona G. Intracellular signal modulation: a pivotal role for protein kinase C. Prog Neuro Psychopharmacol Biol Psychiatry. 1997;21:407–425. doi: 10.1016/S0278-5846(97)00011-0. [DOI] [PubMed] [Google Scholar]
- [8].Dent E.W., Meiri K.F. GAP-43 phosphorylation is dynamically regulated in individual growth cones. J Neurobiol. 1992;23:1037–1053. doi: 10.1002/neu.480230809. [DOI] [PubMed] [Google Scholar]
- [9].Disatnik M.H., Rando T.A. Integrin-mediated muscle cell spreading: the role of protein kinase C in outside-in and inside-out signaling and evidence of integrin cross-talk. J Biol Chem. 1999;274:32486–32492. doi: 10.1074/jbc.274.45.32486. [DOI] [PubMed] [Google Scholar]
- [10].Eble D.M., Strait J.B., Govindarajan G., Lou J., Byron K.L., Samarel A.M. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol. 2000;278:H1695–H1707. doi: 10.1152/ajpheart.2000.278.5.H1695. [DOI] [PubMed] [Google Scholar]
- [11].Ekstrom P.A.R., Bergstrand H., Ekstrom A. Effects of protein kinase inhibitors on regeneration in vitro of adult frog sciatic sensory axons. J Neurosci Res. 1992;31(3):462–469. doi: 10.1002/jnr.490310308. [DOI] [PubMed] [Google Scholar]
- [12].Fagerstrom S., Pahlman S., Gestblom C., Nanberg E. Protein Kinase C-ɛ is implicated in neurite outgrowth in differentiating human neuroblastoma cells. Cell Growth Differ. 1996;7:775–785. [PubMed] [Google Scholar]
- [13].Hasegawa Y., Fujitani M., Hata K., Tohyama M., Yamagishi S., Yamashita T. Promotion of axon regeneration by myelin associated glycoprotein and Nogo through divergent signals downstream of Gi/G. J Neurosci. 2004;24:6826–6832. doi: 10.1523/JNEUROSCI.1856-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].He Q., Dent E.W., Meiri K.F. Modulation of actin Filament behavior by GAP-43 (Neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci. 1997;17:3515–3524. doi: 10.1523/JNEUROSCI.17-10-03515.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Ivankovic D.I., Gronroos E., Blaukat A., Barth B.U., Dikic I. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol. 2000;2:574–581. doi: 10.1038/35023515. [DOI] [PubMed] [Google Scholar]
- [16].Kawano S., Okajima S., Mizoguchi A. Immunocytochemical distribution of Ca2+-independent protein kinase C subtypes (δ, ɛ, and λ) in regeneration axonal growth cones of rat peripheral nerve. Neurosci. 1997;81:263–273. doi: 10.1016/S0306-4522(97)00158-9. [DOI] [PubMed] [Google Scholar]
- [17].Lallemend F., Hadjab S., Hans G., Moonen G., Lefebvre P.P., Malgrange B. Activation of protein kinase C beta I constitutes a new neurotrophic pathway for deafferented spiral ganglion neurons. J Cell Sci. 2005;118:4511–4525. doi: 10.1242/jcs.02572. [DOI] [PubMed] [Google Scholar]
- [18].Lewis J.M., Cheresh D.A., Schwartz M.A. Protein kinase C regulates αvβ5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol. 1996;134:1323–1332. doi: 10.1083/jcb.134.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with Folin-phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- [20].Miki A. a. Expression of α-, β-and γ-subspecies of protein kinase C in the motor neurons in the embryonic and postnatal rat spinal cord. Neuroscience. 1996;72:805–814. doi: 10.1016/0306-4522(95)00576-5. [DOI] [PubMed] [Google Scholar]
- [21].Miki A. b. Developmental expression of α-, β- and β-subspecies of protein kinase C in the dorsal corticospinal tract in the rat spinal cord. Neuroscience. 1996;75:939–948. doi: 10.1016/0306-4522(96)00365-X. [DOI] [PubMed] [Google Scholar]
- [22].Oestreicher A.B., Degrann P.N., Gispen W.H., Verhaagen J., Schrama L.H. B-50, the growth associated protein-43: modulation of cell morphology and communication in nervous system. Prog Neurobiol. 1997;53:627–636. doi: 10.1016/S0301-0082(97)00043-9. [DOI] [PubMed] [Google Scholar]
- [23].Okajima S., Mizoguchi A., Tamai K., Hirasawa Y., Ide C. Distribution of Protein Kinase C (α, β, γ subtypes) in normal nerve fibers and in regeneration growth cones of the peripheral nervors system. Neuroscience. 1995;66:645–654. doi: 10.1016/0306-4522(94)00591-R. [DOI] [PubMed] [Google Scholar]
- [24].Oudkhir M., Martelly I., Boilly B., Castagna M. Increased protein kinase C activity in the central nervous system of the newt during limb regeneration. Biochem Biophys Res Commun. 1992;184:433–440. doi: 10.1016/0006-291X(92)91212-9. [DOI] [PubMed] [Google Scholar]
- [25].Roivainen R. Increase in protein kinase C-β-like immunoreactivity (PKC-β-LI) in the rat superior cervical ganglion after decentralization. Neurosci Res. 1991;11:292–296. doi: 10.1016/0168-0102(91)90012-N. [DOI] [PubMed] [Google Scholar]
- [26].Santos A.A.D., Araujo E.G.D. The effect of PKC activation on the survival of rat retinal ganglion cells in culture. Brain Res. 2000;853:338–343. doi: 10.1016/S0006-8993(99)02319-7. [DOI] [PubMed] [Google Scholar]
- [27].Seko Y., Takahashi N., Tobe K., Kadowaki T., Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Biochem Biophys Res Comm. 1999;259:8–14. doi: 10.1006/bbrc.1999.0720. [DOI] [PubMed] [Google Scholar]
- [28].Sheu F.S., Marais R.M., Parker P.J., Bazan N.G., Routtenberg A. Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C. Biochem Biophys Res Commun. 1990;171:1236–1243. doi: 10.1016/0006-291X(90)90818-8. [DOI] [PubMed] [Google Scholar]
- [29].Sivasankaran R., Pei J., Wang K.C., Zhang Y.P., Shields C.B., Xu X.M., et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci. 2004;7:261–268. doi: 10.1038/nn1193. [DOI] [PubMed] [Google Scholar]
- [30].Slepko N., Patrizio M., Levi G. Expression and translocation of protein kinase C isoforms in rat microglial and astroglial cultures. J Neurosci Res. 1999;57:33–38. doi: 10.1002/(SICI)1097-4547(19990701)57:1<33::AID-JNR4>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- [31].Teng F.Y., Tang B.L. Axonal regeneration in adult CNS neurons-signaling molecules and pathways. J Neurochem. 2006;96:1501–1508. doi: 10.1111/j.1471-4159.2006.03663.x. [DOI] [PubMed] [Google Scholar]
- [32].Tsai S.Y., Yang L.Y., Wu C.H., Chang S.F., Hsu C.Y., Wei C.P., et al. Injury-induced Janus kinase/protein kinase C-dependent phosphorylation of growth-associated protein 43 and signal transducer and activator of transcription 3 for neurite growth in dorsal root ganglion. J Neurosci Res. 2007;85:321–331. doi: 10.1002/jnr.21119. [DOI] [PubMed] [Google Scholar]
- [33].Wiklund P., Ekstrom P.A.R., Edbladh M., Tonge D., Edstrom A. Protein kinase C and mouse sciatic nerve regeneration. Brain Res. 1996;715:145–154. doi: 10.1016/0006-8993(95)01570-1. [DOI] [PubMed] [Google Scholar]
- [34].Wiklund P., Ekstrom P.A.R. Protein kinase C inhibition has only a transient growth arresting effect on in vitro regenerating mouse sensory neurons. Neurosci Lett. 1999;275:155–158. doi: 10.1016/S0304-3940(99)00720-X. [DOI] [PubMed] [Google Scholar]
- [35].Wu D.Y., Zheng J.Q., McDonald M.A., Chang B., Twiss J.L. PKC isozymes in the enhanced regrowth of retinal neurites after optic nerve injury. IOVS. 2003;44:2783–2790. doi: 10.1167/iovs.02-0715. [DOI] [PubMed] [Google Scholar]
- [36].Yamada E., Kataoka H., Hazama F. Specific expression of type II protein kinase C after axotomy in the dorsal motor nucleus of the vagus nerve and the hypoglossal nucleus. Brain Res. 1994;639:341–346. doi: 10.1016/0006-8993(94)91751-5. [DOI] [PubMed] [Google Scholar]
- [37].Yoshimura T., Goda S., Kobayashi T., Goto I. Involvement of protein kinase C in the proliferation of cultured Schwann cells. Brain Res. 1993;617:55–60. doi: 10.1016/0006-8993(93)90612-Q. [DOI] [PubMed] [Google Scholar]
