Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Feb 3;26(1):77–84. doi: 10.1007/s12264-010-0703-z

Roles of the prostaglandin E2 receptors EP subtypes in Alzheimer’s disease

前列腺素E2 受体EP 亚型在阿尔茨海默病中的作用

Li-Li Wei 1, Yue-Di Shen 2, Ying-Chun Zhang 1, Xing-Yue Hu 3, Pei-Ling Lu 3, Li Wang 3, Wei Chen 1,
PMCID: PMC5560376  PMID: 20101275

Abstract

Neuroinflammation has always been of concern in the pathogenesis of Alzheimer’s disease (AD). As a major inflammatory mediator, prostaglandin E2(PGE2) plays an important role in the inflammatory process of AD. Up to now, there is still controversy on the neuroprotective or neurotoxic role of PGE2. However, the role of PGE2 in neurodegeneration may be far more complex, due to the 4 EP receptor subtypes. This article aims to summarize the relationship between PGE2 receptor EP subtypes and AD. It is believed that a better understanding of the PGE2 receptor EP subtypes may help to clarify the relation between inflammation and AD, and to develop novel therapeutic strategies targeting specific EP receptor for AD treatment.

Keywords: inflammation, Alzheimer’s disease, prostaglandin E2, prostaglandin E2 receptors

References

  • [1].Wan Y., Wang G., Chen S.D. Genetic predisposition to inflammation: a new risk factor of Alzheimer’s disease. Neurosci Bull. 2008;24:314–322. doi: 10.1007/s12264-008-0619-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421. doi: 10.1016/S0197-4580(00)00124-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Etminan M., Gill S., Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ. 2003;327:128. doi: 10.1136/bmj.327.7407.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].in t’ Veld B.A., Ruitenberg A., Hofman A., Launer L.J., van Duijn C.M., Stijnen T., et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345:1515–1521. doi: 10.1056/NEJMoa010178. [DOI] [PubMed] [Google Scholar]
  • [5].Szekely C.A., Thorne J.E., Zandi P.P., Ek M., Messias E., Breitner J.C., et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology. 2004;23:159–169. doi: 10.1159/000078501. [DOI] [PubMed] [Google Scholar]
  • [6].Jantzen P.T., Connor K.E., DiCarlo G., Wenk G.L., Wallace J.L., Rojiani A.M., et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci. 2002;22:2246–2254. doi: 10.1523/JNEUROSCI.22-06-02246.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Lim G.P., Yang F., Chu T., Chen P., Beech W., Teter B., et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20:5709–5714. doi: 10.1523/JNEUROSCI.20-15-05709.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Yan Q., Zhang J., Liu H., Babu-Khan S., Vassar R., Biere A.L., et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci. 2003;23:7504–7509. doi: 10.1523/JNEUROSCI.23-20-07504.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Szekely C.A., Green R.C., Breitner J.C., Ostbye T., Beiser A.S., Corrada M.M., et al. No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology. 2008;70:2291–2298. doi: 10.1212/01.wnl.0000313933.17796.f6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Arvanitakis Z., Grodstein F., Bienias J.L., Schneider J.A., Wilson R.S., Kelly J.F., et al. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology. 2008;70:2219–2225. doi: 10.1212/01.wnl.0000313813.48505.86. [DOI] [PubMed] [Google Scholar]
  • [11].Zhang B., Du G.H. Anti-inflammatory mechanism of non-steroidal anti-inflammatory drugs. Chin Pharm Bull. 2005;21:905–910. [Google Scholar]
  • [12].Weggen S., Eriksen J.L., Sagi S.A., Pietrzik C.U., Golde T.E., Koo E.H. Abeta42-lowering nonsteroidal anti-inflammatory drugs preserve intramembrane cleavage of the amyloid precursor protein (APP) and ErbB-4 receptor and signaling through the APP intracellular domain. J Biol Chem. 2003;278:30748–30754. doi: 10.1074/jbc.M304824200. [DOI] [PubMed] [Google Scholar]
  • [13].Hoshino T., Nakaya T., Homan T., Tanaka K., Sugimoto Y., Araki W., et al. Involvement of prostaglandin E2 in production of amyloid-beta peptides both in vitro and in vivo. J Biol Chem. 2007;282:32676–32688. doi: 10.1074/jbc.M703087200. [DOI] [PubMed] [Google Scholar]
  • [14].Liang X., Wang Q., Hand T., Wu L., Breyer R.M., Montine T.J., et al. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci. 2005;25:10180–10187. doi: 10.1523/JNEUROSCI.3591-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Takadera T., Shiraishi Y., Ohyashiki T. Prostaglandin E2 induced caspase-dependent apoptosis possibly through activation of EP2 receptors in cultured hippocampal neurons. Neurochem Int. 2004;45:713–719. doi: 10.1016/j.neuint.2004.02.005. [DOI] [PubMed] [Google Scholar]
  • [16].Echeverria V., Clerman A., Dore S. Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure. Eur J Neurosci. 2005;22:2199–2206. doi: 10.1111/j.1460-9568.2005.04427.x. [DOI] [PubMed] [Google Scholar]
  • [17].Slawik H., Volk B., Fiebich B., Hull M. Microglial expression of prostaglandin EP3 receptor in excitotoxic lesions in the rat striatum. Neurochem Int. 2004;45:653–660. doi: 10.1016/j.neuint.2004.04.007. [DOI] [PubMed] [Google Scholar]
  • [18].Shie F.S., Montine K.S., Breyer R.M., Montine T.J. Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid beta-induced damage to neurons. Brain Pathol. 2005;15:134–138. doi: 10.1111/j.1750-3639.2005.tb00509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].McCullough L., Wu L., Haughey N., Liang X., Hand T., Wang Q., et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci. 2004;24:257–268. doi: 10.1523/JNEUROSCI.4485-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Liu D., Wu L., Breyer R., Mattson M.P., Andreasson K. Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol. 2005;57:758–761. doi: 10.1002/ana.20461. [DOI] [PubMed] [Google Scholar]
  • [21].Breyer R.M., Bagdassarian C.K., Myers S.A., Breyer M.D. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–690. doi: 10.1146/annurev.pharmtox.41.1.661. [DOI] [PubMed] [Google Scholar]
  • [22].Wilson R.J., Rhodes S.A., Wood R.L., Shield V.J., Noel L.S., Gray D.W., et al. Functional pharmacology of human prostanoid EP2 and EP4 receptors. Eur J Pharmacol. 2004;501:49–58. doi: 10.1016/j.ejphar.2004.08.025. [DOI] [PubMed] [Google Scholar]
  • [23].Fujino H., Salvi S., Regan J.W. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol Pharmacol. 2005;68:251–259. doi: 10.1124/mol.105.011833. [DOI] [PubMed] [Google Scholar]
  • [24].Sugimoto Y., Narumiya S. Prostaglandin E receptors. J Biol Chem. 2007;282:11613–11617. doi: 10.1074/jbc.R600038200. [DOI] [PubMed] [Google Scholar]
  • [25].Shie F.S., Breyer R.M., Montine T.J. Microglia lacking E Prostanoid Receptor subtype 2 have enhanced Abeta phagocytosis yet lack Abeta-activated neurotoxicity. Am J Pathol. 2005;166:1163–1172. doi: 10.1016/s0002-9440(10)62336-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Ahmad A.S., Saleem S., Ahmad M., Dore S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci. 2006;89:265–270. doi: 10.1093/toxsci/kfj022. [DOI] [PubMed] [Google Scholar]
  • [27].Takadera T., Ohyashiki T. Prostaglandin E2 deteriorates N-methyl-D-aspartate receptor-mediated cytotoxicity possibly by activating EP2 receptors in cultured cortical neurons. Life Sci. 2006;78:1878–1883. doi: 10.1016/j.lfs.2005.08.026. [DOI] [PubMed] [Google Scholar]
  • [28].Pooler A.M., Arjona A.A., Lee R.K., Wurtman R.J. Prostaglandin E2 regulates amyloid precursor protein expression via the EP2 receptor in cultured rat microglia. Neurosci Lett. 2004;362:127–130. doi: 10.1016/j.neulet.2004.03.013. [DOI] [PubMed] [Google Scholar]
  • [29].Wu L., Wang Q., Liang X., Andreasson K. Divergent effects of prostaglandin receptor signaling on neuronal survival. Neurosci Lett. 2007;421:253–258. doi: 10.1016/j.neulet.2007.05.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Lee E.O., Shin Y.J., Chong Y.H. Mechanisms involved in prostaglandin E2-mediated neuroprotection against TNF-alpha: possible involvement of multiple signal transduction and betacatenin/T-cell factor. J Neuroimmunol. 2004;155:21–31. doi: 10.1016/j.jneuroim.2004.05.012. [DOI] [PubMed] [Google Scholar]
  • [31].Kazanietz M.G., Caloca M.J., Eroles P., Fujii T., Garcia-Bermejo M.L., Reilly M., et al. Pharmacology of the receptors for the phorbol ester tumor promoters: multiple receptors with different biochemical properties. Biochem Pharmacol. 2000;60:1417–1424. doi: 10.1016/S0006-2952(00)00470-6. [DOI] [PubMed] [Google Scholar]
  • [32].Hui L., Pei D.S., Zhang Q.G., Guan Q.H., Zhang G.Y. The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res. 2005;1052:1–9. doi: 10.1016/j.brainres.2005.05.043. [DOI] [PubMed] [Google Scholar]
  • [33].Amano H., Hayashi I., Endo H., Kitasato H., Yamashina S., Maruyama T., et al. Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med. 2003;197:221–232. doi: 10.1084/jem.20021408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Kabashima K., Saji T., Murata T., Nagamachi M., Matsuoka T., Segi E., et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest. 2002;109:883–893. doi: 10.1172/JCI14459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Montine T.J., Milatovic D., Gupta R.C., Valyi-Nagy T., Morrow J.D., Breyer R.M. Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem. 2002;83:463–470. doi: 10.1046/j.1471-4159.2002.01157.x. [DOI] [PubMed] [Google Scholar]
  • [36].Shie F.S., Montine K.S., Breyer R.M., Montine T.J. Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia. 2005;52:70–77. doi: 10.1002/glia.20220. [DOI] [PubMed] [Google Scholar]
  • [37].Jin J., Shie F.S., Liu J., Wang Y., Davis J., Schantz A.M., et al. Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alphasynuclein. J Neuroinflammation. 2007;4:2. doi: 10.1186/1742-2094-4-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Chen C., Magee J.C., Bazan N.G. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol. 2002;87:2851–2857. doi: 10.1152/jn.2002.87.6.2851. [DOI] [PubMed] [Google Scholar]
  • [39].Yagami T., Nakazato H., Ueda K., Asakura K., Kuroda T., Hata S., et al. Prostaglandin E2 rescues cortical neurons from amyloid beta protein-induced apoptosis. Brain Res. 2003;959:328–335. doi: 10.1016/S0006-8993(02)03773-3. [DOI] [PubMed] [Google Scholar]
  • [40].Takahashi Y., Hayashi I., Tominari Y., Rikimaru K., Morohashi Y., Kan T., et al. Sulindac sulfide is a noncompetitive gammasecretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem. 2003;278:18664–18670. doi: 10.1074/jbc.M301619200. [DOI] [PubMed] [Google Scholar]
  • [41].Weggen S., Eriksen J.L., Sagi S.A., Pietrzik C.U., Ozols V., Fauq A., et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gammasecretase activity. J Biol Chem. 2003;278:31831–31837. doi: 10.1074/jbc.M303592200. [DOI] [PubMed] [Google Scholar]
  • [42].Li J., Liang X., Wang Q., Breyer R.M., McCullough L., Andreasson K. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neurosci Lett. 2008;438:210–215. doi: 10.1016/j.neulet.2008.04.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Kawano T., Anrather J., Zhou P., Park L., Wang G., Frys K.A., et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006;12:225–229. doi: 10.1038/nm1362. [DOI] [PubMed] [Google Scholar]
  • [44].Bilak M., Wu L., Wang Q., Haughey N., Conant K., St Hillaire C., et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol. 2004;56:240–248. doi: 10.1002/ana.20179. [DOI] [PubMed] [Google Scholar]
  • [45].Brunet A., Datta S.R., Greenberg M.E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297–305. doi: 10.1016/S0959-4388(00)00211-7. [DOI] [PubMed] [Google Scholar]
  • [46].Chen W., Shen Y.D., Yao H.P., Zhao G.S. Inhibition of lipopolysaccharide-induced expression of cyclooxygenase-2 in PC-12 cells by triptolide. Chin Pharm J. 2005;40:274–277. [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES