Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Feb 3;26(1):55–65. doi: 10.1007/s12264-010-0716-7

Dietary restriction and brain health

限制饮食和大脑健康

Guang Qiu 1,2, Shan Liu 3, Kwok-Fai So 2,4,
PMCID: PMC5560378  PMID: 20101273

Abstract

The benefits of dietary restriction (DR) on health and aging prevention have been well recognized. Recent studies suggest that DR may enhance brain functions including learning and memory, synaptic plasticity, and neurogenesis, all of which are associated with brain health. Under the stress stimulated by DR, a favorable environment is established for facilitating neuronal plasticity, enhancing cognitive function, stimulating neurogenesis and regulating inflammatory response. DR-induced expressions of factors such as heat shock proteins (HSPs), neurotrophic factors, and Sirtuin1 (SIRT1) are responsible for the effect of DR on the brain. Due to the difficulty in practising long-term DR in human, the potential mimics of DR are also discussed.

Keywords: dietary restriction, brain

References

  • [1].Fontana L., Klein S. Aging, adiposity, and calorie restriction. Jama. 2007;297:986–994. doi: 10.1001/jama.297.9.986. [DOI] [PubMed] [Google Scholar]
  • [2].McCay C.M. Iodized salt a hundred years ago. Science. 1935;82:350–351. doi: 10.1126/science.82.2128.350-a. [DOI] [PubMed] [Google Scholar]
  • [3].Weindruch R., Naylor P.H., Goldstein A.L., Walford R.L. Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J Gerontol. 1988;43:B40–42. doi: 10.1093/geronj/43.2.b40. [DOI] [PubMed] [Google Scholar]
  • [4].Sprott R.L. Diet and calorie restriction. Exp Gerontol. 1997;32:205–214. doi: 10.1016/S0531-5565(96)00065-4. [DOI] [PubMed] [Google Scholar]
  • [5].Chapman T., Partridge L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci. 1996;263:755–759. doi: 10.1098/rspb.1996.0113. [DOI] [PubMed] [Google Scholar]
  • [6].Houthoofd K., Braeckman B.P., Lenaerts I., Brys K., De Vreese A., Van Eygen S., et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol. 2002;37:1371–1378. doi: 10.1016/S0531-5565(02)00173-0. [DOI] [PubMed] [Google Scholar]
  • [7].Mattson M.P., Maudsley S., Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev. 2004;3:445–464. doi: 10.1016/j.arr.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • [8].Ingram D.K., Anson R.M., de Cabo R., Mamczarz J., Zhu M., Mattison J., et al. Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci. 2004;1019:412–423. doi: 10.1196/annals.1297.074. [DOI] [PubMed] [Google Scholar]
  • [9].Masoro E.J. Caloric restriction and aging: an update. Exp Gerontol. 2000;35:299–305. doi: 10.1016/S0531-5565(00)00084-X. [DOI] [PubMed] [Google Scholar]
  • [10].Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Ingram D.K., Reynolds M.A. The relationship of body weight to longevity within laboratory rodent species. Basic Life Sci. 1987;42:247–282. doi: 10.1007/978-1-4613-1939-9_18. [DOI] [PubMed] [Google Scholar]
  • [12].Anson R.M., Guo Z., de Cabo R., Iyun T., Rios M., Hagepanos A., et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216–6220. doi: 10.1073/pnas.1035720100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Mattson M.P., Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129–137. doi: 10.1016/j.jnutbio.2004.12.007. [DOI] [PubMed] [Google Scholar]
  • [14].Duan W., Guo Z., Mattson M.P. Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J Neurochem. 2001;76:619–626. doi: 10.1046/j.1471-4159.2001.00071.x. [DOI] [PubMed] [Google Scholar]
  • [15].Adams M.M., Shi L., Linville M.C., Forbes M.E., Long A.B., Bennett C., et al. Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. Exp Neurol. 2008;211(1):141–149. doi: 10.1016/j.expneurol.2008.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Halagappa V.K., Guo Z., Pearson M., Matsuoka Y., Cutler R.G., Laferla F.M., et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2007;26:212–220. doi: 10.1016/j.nbd.2006.12.019. [DOI] [PubMed] [Google Scholar]
  • [17].Means L.W., Higgins J.L., Fernandez T.J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol Behav. 1993;54:503–508. doi: 10.1016/0031-9384(93)90243-9. [DOI] [PubMed] [Google Scholar]
  • [18].Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al. Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus) J Alzheimers Dis. 2006;10:417–422. doi: 10.3233/jad-2006-10411. [DOI] [PubMed] [Google Scholar]
  • [19].Kretsch M.J., Green M.W., Fong A.K., Elliman N.A., Johnson H.L. Cognitive effects of a long-term weight reducing diet. Int J Obes Relat Metab Disord. 1997;21:14–21. doi: 10.1038/sj.ijo.0800353. [DOI] [PubMed] [Google Scholar]
  • [20].Martin B., Pearson M., Kebejian L., Golden E., Keselman A., Bender M., et al. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology. 2007;148:4318–4333. doi: 10.1210/en.2007-0161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Luchsinger J.A., Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004;3:579–587. doi: 10.1016/S1474-4422(04)00878-6. [DOI] [PubMed] [Google Scholar]
  • [22].Cooke S.F., Bliss T.V. Plasticity in the human central nervous system. Brain. 2006;129:1659–1673. doi: 10.1093/brain/awl082. [DOI] [PubMed] [Google Scholar]
  • [23].Eckles-Smith K., Clayton D., Bickford P., Browning M.D. Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res. 2000;78:154–162. doi: 10.1016/S0169-328X(00)00088-7. [DOI] [PubMed] [Google Scholar]
  • [24].Eckles K.E., Dudek E.M., Bickford P.C., Browning M.D. Amelioration of age-related deficits in the stimulation of synapsin phosphorylation. Neurobiol Aging. 1997;18:213–217. doi: 10.1016/S0197-4580(97)00008-0. [DOI] [PubMed] [Google Scholar]
  • [25].Fontan-Lozano A., Saez-Cassanelli J.L., Inda M.C., de los Santos-Arteaga M., Sierra-Dominguez S.A., Lopez-Lluch G., et al. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci. 2007;27:10185–10195. doi: 10.1523/JNEUROSCI.2757-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Shi L., Adams M.M., Linville M.C., Newton I.G., Forbes M.E., Long A.B., et al. Caloric restriction eliminates the aging-related decline in NMDA and AMPA receptor subunits in the rat hippocampus and induces homeostasis. Exp Neurol. 2007;206:70–79. doi: 10.1016/j.expneurol.2007.03.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Gross C.G. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci. 2000;1:67–73. doi: 10.1038/35036235. [DOI] [PubMed] [Google Scholar]
  • [28].Lie D.C., Song H., Colamarino S.A., Ming G.L., Gage F.H. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol. 2004;44:399–421. doi: 10.1146/annurev.pharmtox.44.101802.121631. [DOI] [PubMed] [Google Scholar]
  • [29].Ming G.L., Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223–250. doi: 10.1146/annurev.neuro.28.051804.101459. [DOI] [PubMed] [Google Scholar]
  • [30].Mattson M.P. Will caloric restriction and folate protect against AD and PD? Neurology. 2003;60:690–695. doi: 10.1001/archneur.60.5.690. [DOI] [PubMed] [Google Scholar]
  • [31].Lee J., Seroogy K.B., Mattson M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem. 2002;80:539–547. doi: 10.1046/j.0022-3042.2001.00747.x. [DOI] [PubMed] [Google Scholar]
  • [32].Bondolfi L., Ermini F., Long J.M., Ingram D.K., Jucker M. Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging. 2004;25:333–340. doi: 10.1016/S0197-4580(03)00083-6. [DOI] [PubMed] [Google Scholar]
  • [33].Luchsinger J.A., Tang M.X., Shea S., Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch Neurol. 2002;59:1258–1263. doi: 10.1001/archneur.59.8.1258. [DOI] [PubMed] [Google Scholar]
  • [34].Pasinetti G.M., Zhao Z., Qin W., Ho L., Shrishailam Y., Macgrogan D., et al. Caloric intake and Alzheimer’s disease. Experimental approaches and therapeutic implications. Interdiscip Top Gerontol. 2007;35:159–175. doi: 10.1159/000096561. [DOI] [PubMed] [Google Scholar]
  • [35].Love R. Calorie restriction may be neuroprotective in AD and PD. Lancet Neurol. 2005;4:84. doi: 10.1016/S1474-4422(05)00985-3. [DOI] [PubMed] [Google Scholar]
  • [36].Duan W., Mattson M.P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res. 1999;57:195–206. doi: 10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • [37].Patel N.V., Gordon M.N., Connor K.E., Good R.A., Engelman R.W., Mason J., et al. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging. 2005;26:995–1000. doi: 10.1016/j.neurobiolaging.2004.09.014. [DOI] [PubMed] [Google Scholar]
  • [38].Duan W., Guo Z., Jiang H., Ware M., Li X.J., Mattson M.P. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A. 2003;100:2911–2916. doi: 10.1073/pnas.0536856100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Kurukulasuriya L.R., Govindarajan G., Sowers J. Stroke prevention in diabetes and obesity. Expert Rev Cardiovasc Ther. 2006;4:487–502. doi: 10.1586/14779072.4.4.487. [DOI] [PubMed] [Google Scholar]
  • [40].Gogia A., Agarwal P.K. Metabolic syndrome. Indian J Med Sci. 2006;60:72–81. doi: 10.4103/0019-5359.19918. [DOI] [PubMed] [Google Scholar]
  • [41].Mattson M.P. Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res. 2000;886:47–53. doi: 10.1016/S0006-8993(00)02790-6. [DOI] [PubMed] [Google Scholar]
  • [42].Yu Z.F., Mattson M.P. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res. 1999;57:830–839. doi: 10.1002/(SICI)1097-4547(19990915)57:6<830::AID-JNR8>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • [43].Masoro E.J. Overview of caloric restriction and ageing Mech Ageing Dev. 2005;126(9):913–922. doi: 10.1016/j.mad.2005.03.012. [DOI] [PubMed] [Google Scholar]
  • [44].Furst A. Hormetic effects in pharmacology: pharmacological inversions as prototypes for hormesis. Health Phys. 1987;52:527–530. doi: 10.1097/00004032-198705000-00001. [DOI] [PubMed] [Google Scholar]
  • [45].Yu B.P., Chung H.Y. Stress resistance by caloric restriction for longevity. Ann N Y Acad Sci. 2001;928:39–47. doi: 10.1111/j.1749-6632.2001.tb05633.x. [DOI] [PubMed] [Google Scholar]
  • [46].Masoro E.J. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol. 2007;35:1–17. doi: 10.1159/000096552. [DOI] [PubMed] [Google Scholar]
  • [47].Lindquist S., Petersen R. Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme. 1990;44:147–166. doi: 10.1159/000468754. [DOI] [PubMed] [Google Scholar]
  • [48].Watson K. Microbial stress proteins. Adv Microb Physiol. 1990;31:183–223. doi: 10.1016/S0065-2911(08)60122-8. [DOI] [PubMed] [Google Scholar]
  • [49].Kiang J.G., Tsokos G.C. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80:183–201. doi: 10.1016/S0163-7258(98)00028-X. [DOI] [PubMed] [Google Scholar]
  • [50].Veereshwarayya V., Kumar P., Rosen K.M., Mestril R., Querfurth H.W. Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem. 2006;281:29468–29478. doi: 10.1074/jbc.M602533200. [DOI] [PubMed] [Google Scholar]
  • [51].Kakimura J., Kitamura Y., Takata K., Umeki M., Suzuki S., Shibagaki K., et al. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. Faseb J. 2002;16:601–603. doi: 10.1096/fj.01-0530fje. [DOI] [PubMed] [Google Scholar]
  • [52].Brown I.R. Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci. 2007;1113:147–158. doi: 10.1196/annals.1391.032. [DOI] [PubMed] [Google Scholar]
  • [53].Mattson M.P., Scheff S.W. Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma. 1994;11:3–33. doi: 10.1089/neu.1994.11.3. [DOI] [PubMed] [Google Scholar]
  • [54].Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull. 2008;24:265–270. doi: 10.1007/s12264-008-0402-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [55].Acheson A., Conover J.C., Fandl J.P., DeChiara T.M., Russell M., Thadani A., et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995;374:450–453. doi: 10.1038/374450a0. [DOI] [PubMed] [Google Scholar]
  • [56].Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Hall J., Thomas K.L., Everitt B.J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci. 2000;3:533–535. doi: 10.1038/75698. [DOI] [PubMed] [Google Scholar]
  • [58].Mizuno M., Yamada K., Olariu A., Nawa H., Nabeshima T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci. 2000;20:7116–7121. doi: 10.1523/JNEUROSCI.20-18-07116.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Lowenstein D.H., Arsenault L. The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons. J Neurosci. 1996;16:1759–1769. doi: 10.1523/JNEUROSCI.16-05-01759.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Grubisha O., Smith B.C., Denu J.M. Small molecule regulation of Sir2 protein deacetylases. Febs J. 2005;272:4607–4616. doi: 10.1111/j.1742-4658.2005.04862.x. [DOI] [PubMed] [Google Scholar]
  • [61].Anastasiou D., Krek W. SIRT1: linking adaptive cellular responses to aging-associated changes in organismal physiology. Physiology (Bethesda) 2006;21:404–410. doi: 10.1152/physiol.00031.2006. [DOI] [PubMed] [Google Scholar]
  • [62].Tang B.L., Chua C.E. SIRT1 and neuronal diseases. Mol Aspects Med. 2007;29(3):187–200. doi: 10.1016/j.mam.2007.02.001. [DOI] [PubMed] [Google Scholar]
  • [63].Chen J., Zhou Y., Mueller-Steiner S., Chen L.F., Kwon H., Yi S., et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005;280:40364–40374. doi: 10.1074/jbc.M509329200. [DOI] [PubMed] [Google Scholar]
  • [64].Qin W., Yang T., Ho L., Zhao Z., Wang J., Chen L., et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745–21754. doi: 10.1074/jbc.M602909200. [DOI] [PubMed] [Google Scholar]
  • [65].Pallas M., Verdaguer E., Tajes M., Gutierrez-Cuesta J., Camins A. Modulation of sirtuins: new targets for antiageing. Recent Pat CNS Drug Discov. 2008;3:61–69. doi: 10.2174/157488908783421492. [DOI] [PubMed] [Google Scholar]
  • [66].Raval A.P., Dave K.R., Perez-Pinzon M.A. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2006;26:1141–1147. doi: 10.1038/sj.jcbfm.9600262. [DOI] [PubMed] [Google Scholar]
  • [67].Cotman C.W., Berchtold N.C., Christie L.A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–472. doi: 10.1016/j.tins.2007.06.011. [DOI] [PubMed] [Google Scholar]
  • [68].Zhu M., Lee G.D., Ding L., Hu J., Qiu G., de Cabo R., et al. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp Gerontol. 2007;42:733–744. doi: 10.1016/j.exger.2007.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Berg A.H., Combs T.P., Scherer P.E. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13:84–89. doi: 10.1016/S1043-2760(01)00524-0. [DOI] [PubMed] [Google Scholar]
  • [70].Calvani M., Scarfone A., Granato L., Mora E.V., Nanni G., Castagneto M., et al. Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes. 2004;53:939–947. doi: 10.2337/diabetes.53.4.939. [DOI] [PubMed] [Google Scholar]
  • [71].Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439–451. doi: 10.1210/er.2005-0005. [DOI] [PubMed] [Google Scholar]
  • [72].Hu E., Liang P., Spiegelman B.M. AdipoQ is a novel adipose specific gene dysregulated in obesity. J Biol Chem. 1996;271:10697–10703. doi: 10.1074/jbc.271.18.10697. [DOI] [PubMed] [Google Scholar]
  • [73].Weyer C., Funahashi T., Tanaka S., Hotta K., Matsuzawa Y., Pratley R.E., et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–1935. doi: 10.1210/jc.86.5.1930. [DOI] [PubMed] [Google Scholar]
  • [74].Rodriguez-Pacheco F., Martinez-Fuentes A.J., Tovar S., Pinilla L., Tena-Sempere M., Dieguez C., et al. Regulation of pituitary cell function by adiponectin. Endocrinology. 2007;148:401–410. doi: 10.1210/en.2006-1019. [DOI] [PubMed] [Google Scholar]
  • [75].Beltowski J., Jamroz-Wisniewska A., Widomska S. Adiponectin and its role in cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets. 2008;8:7–46. doi: 10.2174/187152908783884920. [DOI] [PubMed] [Google Scholar]
  • [76].Nishimura M., Izumiya Y., Higuchi A., Shibata R., Qiu J., Kudo C., et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation. 2008;117:216–223. doi: 10.1161/CIRCULATIONAHA.107.725044. [DOI] [PubMed] [Google Scholar]
  • [77].Bulcao C., Ferreira S.R., Giuffrida F.M., Ribeiro-Filho F.F. The new adipose tissue and adipocytokines. Curr Diabetes Rev. 2006;2:19–28. doi: 10.2174/157339906775473617. [DOI] [PubMed] [Google Scholar]
  • [78].Guerreiro R.J., Santana I., Bras J.M., Santiago B., Paiva A., Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis. 2007;4:406–412. doi: 10.1159/000107700. [DOI] [PubMed] [Google Scholar]
  • [79].Qi Y., Takahashi N., Hileman S.M., Patel H.R., Berg A.H., Pajvani U.B., et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10:524–529. doi: 10.1038/nm1029. [DOI] [PubMed] [Google Scholar]
  • [80].Raubenheimer P.J., Young E.A., Andrew R., Seckl J.R. The role of corticosterone in human hypothalamic-pituitary-adrenal axis feedback. Clin Endocrinol (Oxf) 2006;65:22–26. doi: 10.1111/j.1365-2265.2006.02540.x. [DOI] [PubMed] [Google Scholar]
  • [81].Sabatino F., Masoro E.J., McMahan C.A., Kuhn R.W. Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J Gerontol. 1991;46:B171–179. doi: 10.1093/geronj/46.5.b171. [DOI] [PubMed] [Google Scholar]
  • [82].Munck A., Holbrook N.J. Glucocorticoid-receptor complexes in rat thymus cells. Rapid kinetic behavior and a cyclic model. J Biol Chem. 1984;259:820–831. [PubMed] [Google Scholar]
  • [83].Fietta P. Glucocorticoids and brain functions. Riv Biol. 2007;100:403–418. [PubMed] [Google Scholar]
  • [84].de Kloet E.R., Reul J.M., de Ronde F.S., Bloemers M., Ratka A. Function and plasticity of brain corticosteroid receptor systems: action of neuropeptides. J Steroid Biochem. 1986;25:723–731. doi: 10.1016/0022-4731(86)90301-8. [DOI] [PubMed] [Google Scholar]
  • [85].Sousa N., Cerqueira J.J., Almeida O.F. Corticosteroid receptors and neuroplasticity. Brain Res Rev. 2008;57:561–570. doi: 10.1016/j.brainresrev.2007.06.007. [DOI] [PubMed] [Google Scholar]
  • [86].Greiner M., Cardenas S., Parra C., Bravo J., Avalos A.M., Paredes A., et al. Adrenalectomy regulates apoptotic-associated genes in rat hippocampus. Endocrine. 2001;15:323–333. doi: 10.1385/ENDO:15:3:323. [DOI] [PubMed] [Google Scholar]
  • [87].Sandi C., Rose S.P. Training-dependent biphasic effects of corticosterone in memory formation for a passive avoidance task in chicks. Psychopharmacology (Berl) 1997;133:152–160. doi: 10.1007/s002130050385. [DOI] [PubMed] [Google Scholar]
  • [88].Qiu G., Helmeste D.M., Samaranayake A.N., Lau W.M., Lee T.M., Tang S.W., et al. Modulation of the suppressive effect of corticosterone on adult rat hippocampal cell proliferation by paroxetine. Neurosci Bull. 2007;23:131–136. doi: 10.1007/s12264-007-0019-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [89].Lupien S.J., Fiocco A., Wan N., Maheu F., Lord C., Schramek T., et al. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology. 2005;30:225–242. doi: 10.1016/j.psyneuen.2004.08.003. [DOI] [PubMed] [Google Scholar]
  • [90].Forget H., Lacroix A., Cohen H. Persistent cognitive impairment following surgical treatment of Cushing’s syndrome. Psychoneuroendocrinology. 2002;27:367–383. doi: 10.1016/S0306-4530(01)00059-2. [DOI] [PubMed] [Google Scholar]
  • [91].Wood J.G., Rogina B., Lavu S., Howitz K., Helfand S.L., Tatar M., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–689. doi: 10.1038/nature02789. [DOI] [PubMed] [Google Scholar]
  • [92].Anisimov V.N., Berstein L.M., Egormin P.A., Piskunova T.S., Popovich I.G., Zabezhinski M.A., et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle. 2008;7:2769–2773. doi: 10.4161/cc.7.17.6625. [DOI] [PubMed] [Google Scholar]
  • [93].Zhu Z., Jiang W., McGinley J.N., Thompson H.J. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res. 2005;65:7023–7030. doi: 10.1158/0008-5472.CAN-05-0453. [DOI] [PubMed] [Google Scholar]
  • [94].Bauer J.H., Goupil S., Garber G.B., Helfand S.L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2004;101:12980–12985. doi: 10.1073/pnas.0403493101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [95].Valenzano D.R., Terzibasi E., Genade T., Cattaneo A., Domenici L., Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol. 2006;16:296–300. doi: 10.1016/j.cub.2005.12.038. [DOI] [PubMed] [Google Scholar]
  • [96].Chen D., Guarente L. SIR2: a potential target for calorie restriction mimetics. Trends Mol Med. 2007;13:64–71. doi: 10.1016/j.molmed.2006.12.004. [DOI] [PubMed] [Google Scholar]
  • [97].Vieira de Almeida L.M., Pineiro C.C., Leite M.C., Brolese G., Leal R.B., Gottfried C., et al. Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res. 2008;33:8–15. doi: 10.1007/s11064-007-9399-5. [DOI] [PubMed] [Google Scholar]
  • [98].Sharma M., Gupta Y.K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002;71:2489–2498. doi: 10.1016/S0024-3205(02)02083-0. [DOI] [PubMed] [Google Scholar]
  • [99].Huang S.S., Tsai M.C., Chih C.L., Hung L.M., Tsai S.K. Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia. Life Sci. 2001;69:1057–1065. doi: 10.1016/S0024-3205(01)01195-X. [DOI] [PubMed] [Google Scholar]
  • [100].Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES