Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Feb 3;26(1):8–16. doi: 10.1007/s12264-010-0813-7

Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage

谷氨酸致人神经母细胞瘤细胞兴奋性毒损伤的机制

Zhong-Wei Sun 1, Lan Zhang 1, Shu-Jia Zhu 1, Wen-Chun Chen 1, Bing Mei 1,
PMCID: PMC5560379  PMID: 20101268

Abstract

Objective

To investigate the mechanisms of excitotoxic effects of glutamate on human neuroblastoma SH-SY5Y cells.

Methods

SH-SY5Y cell viability was measured by MTT assay. Other damaged profile was detected by lactate dehydrogenase (LDH) release and by 4′, 6-diamidino-2-phenylindole (DAPI) staining. The cytosolic calcium concentration was tested by calcium influx assay. The glutamate-induced oxidative stress was analyzed by cytosolic glutathione assay, superoxide dismutase (SOD) assay and extracellular malondialdehyde (MDA) assay.

Results

Glutamate treatment caused damage in SHSY5Y cells, including the decrease of cell viability, the increase of LDH release and the alterations of morphological structures. Furthermore, the concentration of cytoplasmic calcium in SH-SY5Y cells was not changed within 20 min following glutamate treatment, while cytosolic calcium concentration significantly increased within 24 h after glutamate treatment, which could not be inhibited by MK801, an antagonist of NMDA receptors, or by LY341495, an antagonist of metabotropic glutamate receptors. On the other hand, oxidative damage was observed in SH-SY5Y cells treated with glutamate, including decreases in glutathione content and SOD activity, and elevation of MDA level, all of which could be alleviated by an antioxidant Tanshinone IIA (Tan IIA, a major active ingredient from a Chinese plant Salvia Miltiorrhiza Bge).

Conclusion

Glutamate exerts toxicity in human neuroblastoma SH-SY5Y cells possibly through oxidative damage, not through calcium homeostasis destruction mediated by NMDA receptors.

Keywords: glutamate, excitotoxicity, cytosolic calcium, oxidative damage

Footnotes

These authors contributed equally to this work.

References

  • [1].Ludolph A.C., Münch C. Neurotoxic mechanisms of degeneration in motor neuron diseases. Drug Metab Rev. 1999;31:619–634. doi: 10.1081/DMR-100101938. [DOI] [PubMed] [Google Scholar]
  • [2].Shaw P.J. Calcium, glutamate, and amyotrophic lateral sclerosis: more evidence but no certainties. Ann Neurol. 1999;46:803–805. doi: 10.1002/1531-8249(199912)46:6<803::AID-ANA1>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • [3].Spencer P.S. Food toxins, AMPA receptors, and motor neuron diseases. Drug Metab Rev. 1999;31:561–587. doi: 10.1081/DMR-100101936. [DOI] [PubMed] [Google Scholar]
  • [4].Rothman S.M., Olney J.W. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol. 1986;19:105–111. doi: 10.1002/ana.410190202. [DOI] [PubMed] [Google Scholar]
  • [5].Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther. 1999;81:163–221. doi: 10.1016/S0163-7258(98)00042-4. [DOI] [PubMed] [Google Scholar]
  • [6].Hynd M.R., Scott H.L., Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int. 2004;45:583–595. doi: 10.1016/j.neuint.2004.03.007. [DOI] [PubMed] [Google Scholar]
  • [7].Blandini F., Greenamyre J.T., Nappi G. The role of glutamate in the pathophysiology of Parkinson’s disease. Funct Neuro. 1996;11:3–15. [PubMed] [Google Scholar]
  • [8].Zeron M.M., Chen N.S., Moshaver A., Lee A.T., Wellington C.L., Hayden M.R., et al. Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci. 2001;17:41–53. doi: 10.1006/mcne.2000.0909. [DOI] [PubMed] [Google Scholar]
  • [9].Ankacrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S.A., et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15:961–973. doi: 10.1016/0896-6273(95)90186-8. [DOI] [PubMed] [Google Scholar]
  • [10].Behl C., Widmann M., Trapp T., Holsboer F. 17β-estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun. 1995;216:473–482. doi: 10.1006/bbrc.1995.2647. [DOI] [PubMed] [Google Scholar]
  • [11].Schubert D., Piasecki D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci. 2001;21:7455–7462. doi: 10.1523/JNEUROSCI.21-19-07455.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Pereira C.M.F., Oliveira C.R. Glutamate toxicity on a PC12 cell line involves glutathione depletion and oxidative stress. Free Radical Biol Med. 1997;23:637–647. doi: 10.1016/S0891-5849(97)00020-8. [DOI] [PubMed] [Google Scholar]
  • [13].Pereira C., Santos M.S., Oliveira C. Metabolic inhibition increases glutamate susceptibility on a PC12 cell line. J Neurosci Res. 1998;51:360–370. doi: 10.1002/(SICI)1097-4547(19980201)51:3<360::AID-JNR9>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • [14].Schubert D., Kimura H., Maher P. Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci U S A. 1992;89:8264–8267. doi: 10.1073/pnas.89.17.8264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Froissard P., Duval D. Cytotoxic effects of glutamic acid on PC12 cells. Neurochem Int. 1994;24:485–493. doi: 10.1016/0197-0186(94)90096-5. [DOI] [PubMed] [Google Scholar]
  • [16].Roshandel N.R., Razavi L.L., Far B.T., Mahmoudian M. Mebudipine and dibudipine protect PC12 cells against oxygen-glucose deprivation and glutamate-induced cell death. Pathophysiology. 2008;15:227–231. doi: 10.1016/j.pathophys.2008.09.002. [DOI] [PubMed] [Google Scholar]
  • [17].Chen W.D., Li Y.L., Li L. Influence of potassium chloride or glutamate on calcium ion permeability of human neuroblastoma SH-SY5Y cell line. Chin J Cell Biol. 2000;22:206–209. [Google Scholar]
  • [18].Nikolova S., Lee Y.S., Lee Y.S., Kim J.A. Rac1-NADPH oxidaseregulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic Res. 2005;39:1295–1304. doi: 10.1080/10715760500176866. [DOI] [PubMed] [Google Scholar]
  • [19].Gao M., Zhang W.C., Liu Q.S., Hu J.J., Liu G.G., Du G.H. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. Eur J Pharmacol. 2008;591:73–79. doi: 10.1016/j.ejphar.2008.06.071. [DOI] [PubMed] [Google Scholar]
  • [20].Olney J.W. Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol. 1986;203:631–645. doi: 10.1007/978-1-4684-7971-3_48. [DOI] [PubMed] [Google Scholar]
  • [21].Choi D.W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 1995;18:58–60. doi: 10.1016/0166-2236(95)93870-4. [DOI] [PubMed] [Google Scholar]
  • [22].Leon R., Wu H., Jin Y., Wei J.N., Buddhala C., Prentice H., et al. Protective function of Taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res. 2009;87:1185–1194. doi: 10.1002/jnr.21926. [DOI] [PubMed] [Google Scholar]
  • [23].Tan S., Sagara Y., Liu Y., Maher P., Schubert D. The regulation of peroxide production during programmed cell death. J Cell Biol. 1998;141:1423–1432. doi: 10.1083/jcb.141.6.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Tan S., Wood M., Maher P. Oxidative stress in nerve cells induces a form of cell death with characteristics of both apoptosis and necrosis. J Neurochem. 1998;71:95–105. doi: 10.1046/j.1471-4159.1998.71010095.x. [DOI] [PubMed] [Google Scholar]
  • [25].Leclerc C.L., Chi C.L., Awobuluyi M., Sucher N.J. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the rat pheochromocytoma cell line PC12. Neurosci Lett. 1995;201:103–106. doi: 10.1016/0304-3940(95)12145-5. [DOI] [PubMed] [Google Scholar]
  • [26].Casado M., L-Gaujardo A., Mellstrom B., Naranjo J.R., Lerma J. Functional N-methyl-D-aspartate receptors in clonal pheochromocytoma cells. J Physiol. 1996;490:391–404. doi: 10.1113/jphysiol.1996.sp021153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Sucher N.J., Brose N., Deitcher D.L., Awobluluyi M., Gasie G.P., Bading H., et al. Expression of endogenous NMDAR1 transcripts without receptor protein suggests posttranscriptional control in PC12 cells. J Biol Chem. 1993;268:22299–22304. [PubMed] [Google Scholar]
  • [28].Naarala J., Tervo P., Loikkanen J., Savolainen K. Blocking of carbachol-induced calcium mobilization by glutamate receptor antagonists. Neurosci Res Commun. 2001;30:1–6. doi: 10.1002/nrc.10012. [DOI] [Google Scholar]
  • [29].Akundi R.S., Hüll M., Clement H.W., Fiebich B.L. 1-Trichloromethy1,2,3,4-tetrahydro-β-carboline (TaClo) induces apoptosis in human neuroblastoma cell lines. Ann NY Acad Sci. 2003;1010:304–306. doi: 10.1196/annals.1299.053. [DOI] [PubMed] [Google Scholar]
  • [30].Adamec E., Beermann M.L., Nixon R.A. Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. Mol Brain Res. 1998;54:35–48. doi: 10.1016/S0169-328X(97)00304-5. [DOI] [PubMed] [Google Scholar]
  • [31].Río E.D., Mclaughlin M., Downes C.P., Nicholls D.G. Differential coupling of G-protein-linked receptors to Ca2+ mobilization through inositol(1,4,5)trisphosphate or ryanodine receptors in cerebellar granule cells in primary culture. Eur J Neurosci. 1999;11:3015–3022. doi: 10.1046/j.1460-9568.1999.00714.x. [DOI] [PubMed] [Google Scholar]
  • [32].Fagni L., Ango F., Prezeau L., Worley P.F., Pin J.P., Bockaert J. Control of constitutive activity of metabotropic glutamate receptors by Homer proteins. Int Congr Ser. 2003;1249:245–251. doi: 10.1016/S0531-5131(03)00600-9. [DOI] [Google Scholar]
  • [33].Sato H., Tamba M., Ishii T., Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–11458. doi: 10.1074/jbc.274.17.11455. [DOI] [PubMed] [Google Scholar]
  • [34].Murphy T.H., Miyamoto M., Sastre A., Schnaar R.L., Coyle J.T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989;2:1547–1558. doi: 10.1016/0896-6273(89)90043-3. [DOI] [PubMed] [Google Scholar]
  • [35].Lin R., Wang W.R., Liu J.T., Yang G.D., Han C.J. Protective effect of tanshinone IIA on human umbilical vein endothelial cell injured by hydrogen peroxide and its mechanism. J Ethnopharmacol. 2006;108:217–222. doi: 10.1016/j.jep.2006.05.004. [DOI] [PubMed] [Google Scholar]
  • [36].Li Y.I., Elmer G., LeBoeuf R.C. Tanshinone IIA reduces macrophage death induced by hydrogen peroxide by upregulating glutathione peroxidase. Life Sci. 2008;83:557–562. doi: 10.1016/j.lfs.2008.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Murata T., Omata N., Fujibayashi Y., Waki A., Sadato N., Yoshimoto M., et al. Neurotoxicity after hypoxia/during ischemia due to glutamate with/without free radicals as revealed by dynamic changes in glucose metabolism. Brain Res. 2000;865:259–263. doi: 10.1016/S0006-8993(00)02202-2. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES