Abstract
The cellular messenger nitric oxide (NO) has been linked to neurodegenerative disorders due to the increased expression of the enzymes that catalyze its synthesis in postmortem tissues derived from sufferers of these diseases. Nitrated proteins have also been detected in these samples, revealing that NO is biologically active in regions damaged during neurodegeneration. Modulation of NO levels has been reported not only in the neurons of the central nervous system, but also in the glial cells (microglia and astroglia) activated during the neuroinflammatory response. Neuroinflammation has been found in some neurodegenerative conditions, and inhibition of these neuroinflammatory signals has been shown to delay the progress of such disorders. Thus NO and the pathways triggering its release are emerging as an important research focus in the search for strategies to prevent, halt or cure neurodegenerative diseases.
Keywords: Alzheimer’s disease, neurodegenerative disease, nitric oxide, neuroinflammation, Parkinson’s disease
摘要
一氧化氮(nitric oxide, NO)是一类胞内信使。研究表明, 神经退行性病人脑组织中催化合成NO的酶的表达水平显著提高, 提示NO与神经退行性疾病密切相关。此外, 在这些组织中还检测到硝化的蛋白, 提示NO在这些组织中具有生物活性。在神经免疫应答中, 神经元和胶质细胞(包括小胶质细胞和星形胶质细胞)内都发生了NO 水平的改变。很多神经退行性疾病都伴随有神经炎症, 抑制神经炎症的信号通路能延迟这些疾病的发展。因此, NO及其释放通路已逐渐成为神经退行性疾病研究领域的热点, 对它们的理解能帮助我们找到合适的方案来预防、减缓或者治愈这些疾病。
关键词: 阿尔茨海默病, 神经退行性疾病, 一氧化氮, 神经炎症, 帕金森氏病
References
- [1].Barbosa R.M., Lourenço C.F., Santos R.M., Pomerleau F., Huettl P., Gerhardt G.A., et al. In vivo real-time measurement of nitric oxide in anesthetized rat brain. Methods Enzymol. 2008;441:351–367. doi: 10.1016/S0076-6879(08)01220-2. [DOI] [PubMed] [Google Scholar]
- [2].Hon Y.Y., Sun H., Dejam A., Gladwin M.T. Characterization of erythrocytic uptake and release and disposition pathways of nitrite, nitrate, methemoglobin, and iron-nitrosyl hemoglobin in the human circulation. Drug Metab Dispos. 2010;38(10):1707–1713. doi: 10.1124/dmd.110.034355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 1997;100(10):2417–2423. doi: 10.1172/JCI119782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Springall D.R., Riveros-Moreno V., Buttery L., Suburo A., Bishop A.E., Merrett M., et al. Immunological detection of nitric oxide synthase(s) in human tissues using heterologous antibodies suggesting different isoforms. Histochemistry. 1992;98(4):259–266. doi: 10.1007/BF00271040. [DOI] [PubMed] [Google Scholar]
- [5].Nakane M., Schmidt H.H., Pollock J.S., Forstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
- [6].Kobzik L., Reid M.B., Bredt D.S., Stamler J.S. Nitric oxide in skeletal muscle. Nature. 1994;372:546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
- [7].Islam M.S., Matsumoto M., Tsuchida K., Oka T., Kanouchi H., Suzuki S. Immunohistochemical localization of nitric oxide synthase (NOS) in mouse mammary gland during reproductive cycle. J Vet Med Sci. 2009;71(7):945–949. doi: 10.1292/jvms.71.945. [DOI] [PubMed] [Google Scholar]
- [8].Park S., Harrison-Bernard L.M. Augmented renal vascular nNOS and renin protein expression in angiotensin type 1 receptor null mice. J Histochem Cytochem. 2008;56(4):401–414. doi: 10.1369/jhc.2007.950220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Kim S.O., Song S.H., Hwang E.C., Park K.S., Kwon D.D., Ahn K.Y., et al. The expression of AQP1 and eNOS in menopausal rat urinary bladder. Int Neurourol J. 2010;14(2):78–85. doi: 10.5213/inj.2010.14.2.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Endo D., Yamamoto Y., Yamaguchi-Yamada M., Nakamuta N., Taniguchi K. Localization of eNOS in the olfactory epithelium of the rat. J Vet Med Sci. 2011;73(4):423–430. doi: 10.1292/jvms.10-0353. [DOI] [PubMed] [Google Scholar]
- [11].Park C.S., Krishna G., Ahn M.S., Kang J.H., Chung W.G., Kim D.J., et al. Differential and constitutive expression of neuronal, inducible, and endothelial nitric oxide synthase mRNAs and proteins in pathologically normal human tissues. Nitric Oxide. 2000;4(5):459–471. doi: 10.1006/niox.2000.0300. [DOI] [PubMed] [Google Scholar]
- [12].Saha R.N., Pahan K. Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int. 2006;49(2):154–163. doi: 10.1016/j.neuint.2006.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Ayajiki K., Kindermann M., Hecker M., Fleming I., Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996;78:750–758. doi: 10.1161/01.res.78.5.750. [DOI] [PubMed] [Google Scholar]
- [14].Daniel H., Hemart N., Jaillard D., Crepel F. Long-term depression requires nitric oxide and guanosine 3′:5′ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci. 1993;5(8):1079–1082. doi: 10.1111/j.1460-9568.1993.tb00961.x. [DOI] [PubMed] [Google Scholar]
- [15].Scott T.R., Bennett M.R. The effect of nitric oxide on the efficacy of synaptic transmission through the chick ciliary ganglion. Br J Pharmacol. 1993;110(2):627–632. doi: 10.1111/j.1476-5381.1993.tb13857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Schuman E.M., Meffert M.K., Schulman H., Madison D.V. An ADPribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci U S A. 1994;91(25):11958–11962. doi: 10.1073/pnas.91.25.11958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Jian K., Chen M., Cao X., Zhu X.H., Fung M.L., Gao T.M. Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem Biophys Res Commun. 2007;359(3):481–485. doi: 10.1016/j.bbrc.2007.05.113. [DOI] [PubMed] [Google Scholar]
- [18].Pyriochou A., Papapetropoulos A. Soluble guanylate cyclase: more secrets revealed. Cell Signal. 2005;17(4):407–413. doi: 10.1016/j.cellsig.2004.09.008. [DOI] [PubMed] [Google Scholar]
- [19].Mannick J.B., Schonhoff C., Papeta N., Ghafourifar P., Szibor M., Fang K., et al. S-Nitrosylation of mitochondrial caspases. J Cell Biol. 2001;154(6):1111–1116. doi: 10.1083/jcb.200104008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Prast H., Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol. 2001;64(1):51–68. doi: 10.1016/s0301-0082(00)00044-7. [DOI] [PubMed] [Google Scholar]
- [21].Wilson G.W., Garthwaite J. Hyperpolarization-activated ion channels as targets for nitric oxide signalling in deep cerebellar nuclei. Eur J Neurosci. 2010;31(11):1935–1945. doi: 10.1111/j.1460-9568.2010.07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Ciani E., Virgili M., Contestabile A. Akt pathway mediates a cGMPdependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem. 2002;81(2):218–228. doi: 10.1046/j.1471-4159.2002.00857.x. [DOI] [PubMed] [Google Scholar]
- [23].Martin L.J., Adams N.A., Pan Y., Price A., Wong M. The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci. 2011;31(1):359–370. doi: 10.1523/JNEUROSCI.2225-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Lin D.T., Fretier P., Jiang C., Vincent S.R. Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse. 2010;64(6):460–466. doi: 10.1002/syn.20750. [DOI] [PubMed] [Google Scholar]
- [25].Wen J., Ribeiro R., Zhang Y. Specific PKC isoforms regulate LPSstimulated iNOS induction in murine microglial cells. J Neuroin-flammation. 2011;8:38. doi: 10.1186/1742-2094-8-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Zhang M., Zhou J., Marshall B., Xin H., Atherton S.S. Lack of iNOS facilitates MCMV spread in the retina. Invest Ophthalmol Vis Sci. 2007;48(1):285–292. doi: 10.1167/iovs.06-0792. [DOI] [PubMed] [Google Scholar]
- [27].Ono K., Suzuki H., Sawada M. Delayed neural damage is induced by iNOS-expressing microglia in a brain injury model. Neurosci Lett. 2010;473(2):146–150. doi: 10.1016/j.neulet.2010.02.041. [DOI] [PubMed] [Google Scholar]
- [28].Prüss H., Prass K., Ghaeni L., Milosevic M., Muselmann C., Freyer D., et al. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2008;28(3):526–539. doi: 10.1038/sj.jcbfm.9600550. [DOI] [PubMed] [Google Scholar]
- [29].Thippeswamy T., Jain R.K., Mumtaz N., Morris R. Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo. Neurosci Res. 2001;40(1):37–44. doi: 10.1016/s0168-0102(01)00205-x. [DOI] [PubMed] [Google Scholar]
- [30].Thippeswamy T., McKay J.S., Morris R. Bax and caspases are inhibited by endogenous nitric oxide in dorsal root ganglion neurons in vitro. Eur J Neurosci. 2001;14(8):1229–1236. doi: 10.1046/j.0953-816x.2001.01752.x. [DOI] [PubMed] [Google Scholar]
- [31].Kim P.K., Kwon Y.G., Chung H.T., Kim Y.M. Regulation of caspases by nitric oxide. Ann N Y Acad Sci. 2002;962:42–52. doi: 10.1111/j.1749-6632.2002.tb04054.x. [DOI] [PubMed] [Google Scholar]
- [32].Gross S.S., Wolin M.S. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol. 1995;57:737–769. doi: 10.1146/annurev.ph.57.030195.003513. [DOI] [PubMed] [Google Scholar]
- [33].Dawson V.L., Dawson T.M. Nitric oxide in neurodegeneration. Prog Brain Res. 1998;118:215–229. doi: 10.1016/s0079-6123(08)63210-0. [DOI] [PubMed] [Google Scholar]
- [34].Figueroa S., Oset-Gasque M.J., Arce C., Martinez-Honduvilla C.J., Gonzalez M.P. Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res. 2006;83(3):441–449. doi: 10.1002/jnr.20739. [DOI] [PubMed] [Google Scholar]
- [35].Gutierrez-Martin Y., Martin-Romero F.J., Henao F., Gutierrez-Merino C. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J Neurochem. 2005;92(4):973–989. doi: 10.1111/j.1471-4159.2004.02964.x. [DOI] [PubMed] [Google Scholar]
- [36].Oldreive C.E., Gaynor S., Doherty G.H. Developmental changes in the response of murine cerebellar granule cells to nitric oxide. Neurochem Inter. 2008;52:1394–1401. doi: 10.1016/j.neuint.2008.02.010. [DOI] [PubMed] [Google Scholar]
- [37].Oldreive CE, Gaynor S, Doherty GH. Effects of nitric oxide on the survival and neuritogenesis of cerebellar Purkinje neurons. J Mol Neurosci 2011. DOI 10.1007/s12031-011-9590-7. [DOI] [PubMed]
- [38].Behl C., Davis J.B., Klier F.G., Schubert D. Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res. 1994;645(1–2):253–264. doi: 10.1016/0006-8993(94)91659-4. [DOI] [PubMed] [Google Scholar]
- [39].McBride A.G., Borutaité V., Brown G.C. Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim Biophys Acta. 1999;1454(3):275–288. doi: 10.1016/s0925-4439(99)00046-0. [DOI] [PubMed] [Google Scholar]
- [40].Brown G.C., Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med. 2002;33(11):1440–1450. doi: 10.1016/s0891-5849(02)01112-7. [DOI] [PubMed] [Google Scholar]
- [41].Bal-Price A., Brown G.C. Nitric oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem. 2000;75(4):1455–1464. doi: 10.1046/j.1471-4159.2000.0751455.x. [DOI] [PubMed] [Google Scholar]
- [42].Almeida A., Almeida J., Bolaños J.P., Moncada S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A. 2001;98(26):15294–15299. doi: 10.1073/pnas.261560998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Ishitani R., Chuang D.M. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleosideinduced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci U S A. 1996;93(18):9937–9941. doi: 10.1073/pnas.93.18.9937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Sawa A., Khan A.A., Hester L.D., Snyder S.H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A. 1997;94(21):11669–11674. doi: 10.1073/pnas.94.21.11669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Hara M.R., Thomas B., Cascio M.B., Bae B.I., Hester L.D., Dawson V.L., et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A. 2006;103(10):3887–3889. doi: 10.1073/pnas.0511321103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].He J., Kang H., Yan F., Chen C. The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells. Brain Res. 2004;1015(1–2):25–33. doi: 10.1016/j.brainres.2004.04.022. [DOI] [PubMed] [Google Scholar]
- [47].Borutaite V., Morkuniene R., Brown G.C. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Lett. 2000;467(2–3):155–159. doi: 10.1016/s0014-5793(00)01140-6. [DOI] [PubMed] [Google Scholar]
- [48].Bonthius D.J., Luong T., Bonthius N.E., Hostager B.S., Karacay B. Nitric oxide utilizes NF-kappaB to signal its neuroprotective effect against alcohol toxicity. Neuropharmacology. 2009;56(3):716–731. doi: 10.1016/j.neuropharm.2008.12.006. [DOI] [PubMed] [Google Scholar]
- [49].Gao F., Gao E., Yue T.L., Ohlstein E.H., Lopez B.L., Christopher T.A., et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation. 2002;105(12):1497–1502. doi: 10.1161/01.cir.0000012529.00367.0f. [DOI] [PubMed] [Google Scholar]
- [50].Murphy P.R., Limoges M., Dodd F., Boudreau R.T., Too C.K. Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent pathway in Nb2 lymphoma cells. Endocrinology. 2001;142(1):81–88. doi: 10.1210/endo.142.1.7866. [DOI] [PubMed] [Google Scholar]
- [51].Reynolds M.R., Berry R.W., Binder L.I. Nitration in neurodegeneration: deciphering the ‘Hows’ ‘nYs’. Biochemistry. 2007;46(25):7325–7336. doi: 10.1021/bi700430y. [DOI] [PubMed] [Google Scholar]
- [52].Ghafourifar P., Schenk U., Klein S.D., Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem. 1999;274(44):31185–31188. doi: 10.1074/jbc.274.44.31185. [DOI] [PubMed] [Google Scholar]
- [53].Cidad P., Almeida A., Bolaños J.P. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5’-AMP-activated protein kinase. Biochem J. 2004;384:629–636. doi: 10.1042/BJ20040886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Fehrenbach H., Zimmermann G., Starke E., Bratu V.A., Conrad D., Yildirim A.O., et al. Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs. Thorax. 2007;62(5):438–446. doi: 10.1136/thx.2006.062364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Dawson V.L., Dawson T.M., London E.D., Bredt D.S., Snyder S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].Alzheimer A. Ueber eine eigenartige. Erkrankung der Hirnrinde Allg Z Psychiat. 1907;64:146–148. [Google Scholar]
- [57].Alzheimer A., Stelzmann R.A., Schnitzlein H.N., Murtagh F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat. 1995;8(6):429–431. doi: 10.1002/ca.980080612. [DOI] [PubMed] [Google Scholar]
- [58].Zilka N., Novak M. The tangled story of Alois Alzheimer. Bratisl Lek Listy. 2006;107(9–10):343–345. [PubMed] [Google Scholar]
- [59].Doherty G. Metabolic influences on neurological disorders: Focus on homocysteine in Alzheimer’s disease. In: Doherty G.H., editor. Metabolic Influences on Neurological Disorders. Kerala: Transworld Research Network; 2010. pp. 1–12. [Google Scholar]
- [60].Good P.F., Werner P., Hsu A., Olanow C.W., Perl D.P. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol. 1996;149(1):21–28. [PMC free article] [PubMed] [Google Scholar]
- [61].Uehara T., Nakamura T., Yao D., Shi Z.Q., Gu Z., Ma Y., et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441(7092):513–517. doi: 10.1038/nature04782. [DOI] [PubMed] [Google Scholar]
- [62].Honjo Y., Ito H., Horibe T., Takahashi R., Kawakami K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res. 2010;1349:90–96. doi: 10.1016/j.brainres.2010.06.016. [DOI] [PubMed] [Google Scholar]
- [63].Gu Z., Nakamura T., Lipton S.A. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 2010;41(2–3):55–72. doi: 10.1007/s12035-010-8113-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Keil U., Bonert A., Marques C.A., Scherping I., Weyermann J., Strosznajder J.B., et al. Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem. 2004;279(48):50310–50320. doi: 10.1074/jbc.M405600200. [DOI] [PubMed] [Google Scholar]
- [65].Sparrow J.R. Inducible nitric oxide synthase in the central nervous system. J Mol Neurosci. 1994;5(4):219–229. doi: 10.1007/BF02736723. [DOI] [PubMed] [Google Scholar]
- [66].Combs C.K., Karlo J.C., Kao S.C., Landreth G.E. beta-Amyloid stimulation of microglia and monocytes results in TNF alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci. 2001;21(4):1179–1188. doi: 10.1523/JNEUROSCI.21-04-01179.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Yan S.D., Stern D., Kane M.D., Kuo Y.M., Lampert H.C., Roher A.E. RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor Neurol Neurosci. 1998;12(2–3):167–173. [PubMed] [Google Scholar]
- [68].Jana M., Palencia C.A., Pahan K. Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008;181(10):7254–7262. doi: 10.4049/jimmunol.181.10.7254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [69].Doherty G.H. Developmental switch in the effects of TNF alpha on ventral midbrain dopaminergic neurons. Neurosci Res. 2007;57(2):296–305. doi: 10.1016/j.neures.2006.10.019. [DOI] [PubMed] [Google Scholar]
- [70].Bongiorno M.R., Pistone G., Doukaki S., Aricò M. Adalimumab for treatment of moderate to severe psoriasis and psoriatic arthritis. Dermatol Ther. 2008;21(Suppl2):S15–20. doi: 10.1111/j.1529-8019.2008.00227.x. [DOI] [PubMed] [Google Scholar]
- [71].Tobinick E., Gross H., Weinberger A., Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. Med Gen Med. 2006;8:25. [PMC free article] [PubMed] [Google Scholar]
- [72].Mrak R.E., Griffin W.S.T. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging. 2001;22:903–908. doi: 10.1016/s0197-4580(01)00287-1. [DOI] [PubMed] [Google Scholar]
- [73].Rogers J.T., Leiter L.M., McPhee J., Cahill C.M., Zhan S., Potter H., et al. Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem. 1999;274(10):6421–6431. doi: 10.1074/jbc.274.10.6421. [DOI] [PubMed] [Google Scholar]
- [74].Sheng J.G., Jones R.A., Zhou X.Q., McGinness J.M., Van Eldik L.J., Mrak R.E., et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer’s disease: potential significance for tau protein phosphorylation. Neurochem Inter. 2001;39:341–348. doi: 10.1016/s0197-0186(01)00041-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Griffin W.S.T., Mrak R.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukocyte Biol. 2002;72:233–238. [PMC free article] [PubMed] [Google Scholar]
- [76].Lio D., Licastro F., Scola L., Chiappelli M., Grimaldi L.M., Crivello A., et al. Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun. 2003;4:234–238. doi: 10.1038/sj.gene.6363964. [DOI] [PubMed] [Google Scholar]
- [77].Ogawa O., Umegaki H., Sumi D., Hayashi T., Nakamura A., Thakur N.K., et al. Inhibition of inducible nitric oxide synthase gene expression by indomethacin or ibuprofen in beta-amyloid proteinstimulated J774 cells. Eur J Pharmacol. 2000;408(2):137–141. doi: 10.1016/s0014-2999(00)00721-4. [DOI] [PubMed] [Google Scholar]
- [78].Asanuma M., Nishibayashi-Asanuma S., Miyazaki I., Kohno M., Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem. 2001;76(6):1895–1904. doi: 10.1046/j.1471-4159.2001.00205.x. [DOI] [PubMed] [Google Scholar]
- [79].Thomas B., Beal M.F. Parkinson’s disease. Hum Mol Genet. 2007;16:R183–194. doi: 10.1093/hmg/ddm159. [DOI] [PubMed] [Google Scholar]
- [80].Betarbet R., Sherer T.B., Greenamyre J.T. Animal models of Parkinson’s disease. Bioessays. 2002;24(4):308–318. doi: 10.1002/bies.10067. [DOI] [PubMed] [Google Scholar]
- [81].Doherty G.H., Oldreive C., Harvey J. Neuroprotective actions of leptin on central and peripheral neurons in vitro. Neuroscience. 2008;154(4):1297–1307. doi: 10.1016/j.neuroscience.2008.04.052. [DOI] [PubMed] [Google Scholar]
- [82].Mandir A.S., Przedborski S., Jackson-Lewis V., Wang Z.Q., Simbulan-Rosenthal C.M., Smulson M.E., et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999;96(10):5774–5779. doi: 10.1073/pnas.96.10.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Liberatore G.T., Jackson-Lewis V., Vukosavic S., Mandir A.S., Vila M., McAuliffe W.G., et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5(12):1403–1409. doi: 10.1038/70978. [DOI] [PubMed] [Google Scholar]
- [84].Di Matteo V., Pierucci M., Benigno A., Crescimanno G., Esposito E., Di Giovanni G. Involvement of nitric oxide in nigrostriatal dopaminergic system degeneration: a neurochemical study. Ann N Y Acad Sci. 2009;1155:309–315. doi: 10.1111/j.1749-6632.2008.03678.x. [DOI] [PubMed] [Google Scholar]
- [85].Chung K.K., Thomas B., Li X., Pletnikova O., Troncoso J.C., Marsh L., et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science. 2004;304(5675):1328–1331. doi: 10.1126/science.1093891. [DOI] [PubMed] [Google Scholar]
- [86].Wang C., Ko H.S., Thomas B., Tsang F., Chew K.C., Tay S.P., et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet. 2005;14(24):3885–3897. doi: 10.1093/hmg/ddi413. [DOI] [PubMed] [Google Scholar]
- [87].Fang J., Nakamura T., Cho D.H., Gu Z., Lipton S.A. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18742–18747. doi: 10.1073/pnas.0705904104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [88].Tsang A.H., Lee Y.I., Ko H.S., Savitt J.M., Pletnikova O., Troncoso J.C., et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A. 2009;106(12):4900–4905. doi: 10.1073/pnas.0810595106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Lee S.J., Kim D.C., Choi B.H., Ha H., Kim K.T. Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. J Biol Chem. 2006;281(4):2215–2224. doi: 10.1074/jbc.M509509200. [DOI] [PubMed] [Google Scholar]
- [90].McGeer P.L., Itagaki S., Boyes B.E., McGeer E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
- [91].Zhou Y., Wang Y., Kovacs M., Jin J., Zhang J. Microglial activation induced by neurodegeneration: a proteomic analysis. Mol Cell Proteomics. 2005;4(10):1471–1479. doi: 10.1074/mcp.M500114-MCP200. [DOI] [PubMed] [Google Scholar]
- [92].Wu D.C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22(5):1763–1771. doi: 10.1523/JNEUROSCI.22-05-01763.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [93].Ferger B., Leng A., Mura A., Hengerer B., Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem. 2004;89(4):822–833. doi: 10.1111/j.1471-4159.2004.02399.x. [DOI] [PubMed] [Google Scholar]
- [94].Shen S., Yu S., Binek J., Chalimoniuk M., Zhang X., Lo S.C., et al. Distinct signaling pathways for induction of type II NOS by IFN gamma and LPS in BV-2 microglial cells. Neurochem Int. 2005;47(4):298–307. doi: 10.1016/j.neuint.2005.03.007. [DOI] [PubMed] [Google Scholar]
- [95].Miller R.L., James-Kracke M., Sun G.Y., Sun A.Y. Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res. 2009;34(1):55–65. doi: 10.1007/s11064-008-9656-2. [DOI] [PubMed] [Google Scholar]
- [96].Martín-Moreno A.M., Reigada D., Ramírez B.G., Mechoulam R., Innamorato N., Cuadrado A., et al. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol. 2011;79(6):964–973. doi: 10.1124/mol.111.071290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [97].Hoozemans J.J., Rozemuller A.J., Janssen I., De Groot C.J., Veerhuis R., Eikelenboom P. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol. 2001;101(1):2–8. doi: 10.1007/s004010000251. [DOI] [PubMed] [Google Scholar]
- [98].Yasojima K., Schwab C., McGeer E.G., McGeer P.L. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 1999;830(2):226–236. doi: 10.1016/s0006-8993(99)01389-x. [DOI] [PubMed] [Google Scholar]
- [99].Andreasson K.I., Savonenko A., Vidensky S., Goellner J.J., Zhang Y., Shaffer A., et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci. 2001;21(20):8198–8209. doi: 10.1523/JNEUROSCI.21-20-08198.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [100].Lehmann J.M., Lenhard J.M., Oliver B.B., Ringold G.M., Kliewer S.A. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1997;272(6):3406–3410. doi: 10.1074/jbc.272.6.3406. [DOI] [PubMed] [Google Scholar]
- [101].Jiang C., Ting A.T., Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–86. doi: 10.1038/34184. [DOI] [PubMed] [Google Scholar]
- [102].Kitamura Y., Kakimura J., Matsuoka Y., Nomura Y., Gebicke-Haerter P.J., Taniguchi T. Activators of peroxisome proliferator-activated receptor-gamma (PPAR gamma) inhibit inducible nitric oxide synthase expression but increase heme oxygenase-1 expression in rat glial cells. Neurosci Lett. 1999;262(2):129–132. doi: 10.1016/s0304-3940(99)00055-5. [DOI] [PubMed] [Google Scholar]
- [103].Tortosa E., Avila J., Pérez M. Acetylsalicylic acid decreases tau phosphorylation at serine 422. Neurosci Lett. 2006;396(1):77–80. doi: 10.1016/j.neulet.2005.11.066. [DOI] [PubMed] [Google Scholar]
- [104].Zhou Y., Su Y., Li B., Liu F., Ryder J.W., Wu X., et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science. 2003;302(5648):1215–1217. doi: 10.1126/science.1090154. [DOI] [PubMed] [Google Scholar]
- [105].Bourne K.Z., Ferrari D.C., Lange-Dohna C., Rossner S., Wood T.G., Perez-Polo J.R. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res. 2007;85(6):1194–1204. doi: 10.1002/jnr.21252. [DOI] [PubMed] [Google Scholar]
- [106].Lleó A., Berezovska O., Herl L., Raju S., Deng A., Bacskai B.J., et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–1066. doi: 10.1038/nm1112. [DOI] [PubMed] [Google Scholar]
- [107].In’t Veld B.A., Ruitenberg A., Hofman A., Launer L.J., van Duijn C.M., Stijnen T., et al. Do non-steroidal anti-inflammatory drugs reduce the risk of Alzheimer’s Disease? New Eng J Med. 2001;345(21):1515–1521. doi: 10.1056/NEJMoa010178. [DOI] [PubMed] [Google Scholar]
- [108].Stewart W.F., Kawas C., Corrada M., Metter E.J. Risk of Alzheimer’s disease and duration of NSAID use. Neurology. 1997;48(3):626–632. doi: 10.1212/wnl.48.3.626. [DOI] [PubMed] [Google Scholar]
- [109].Rogers J., Kirby L.C., Hempelman S.R., Berry D.L., McGeer P.L., Kaszniak A.W., et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology. 1993;43(8):1609–1611. doi: 10.1212/wnl.43.8.1609. [DOI] [PubMed] [Google Scholar]
- [110].ADAPT Research Group. Lyketsos C.G., Breitner J.C., Green R.C., Martin B.K., Meinert C., et al. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology. 2007;68(21):1800–1808. doi: 10.1212/01.wnl.0000260269.93245.d2. [DOI] [PubMed] [Google Scholar]
- [111].ADAPT Research Group. Martin B.K., Szekely C., Brandt J., Piantadosi S., Breitner J.C., et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008;65(7):896–905. doi: 10.1001/archneur.2008.65.7.nct70006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [112].Gagne J.J., Power M.C. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology. 2010;74(12):995–1002. doi: 10.1212/WNL.0b013e3181d5a4a3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [113].Kumar P., Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol. 2009;47(10):2522–2530. doi: 10.1016/j.fct.2009.07.011. [DOI] [PubMed] [Google Scholar]
- [114].Kumar P., Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide. Behav Brain Res. 2010;206(1):38–46. doi: 10.1016/j.bbr.2009.08.028. [DOI] [PubMed] [Google Scholar]
- [115].Basso M., Samengo G., Nardo G., Massignan T., D’Alessandro G., Tartari S., et al. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One. 2009;4(12):e8130. doi: 10.1371/journal.pone.0008130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].Doherty GH. How can we prevent neuronal apoptosis? In: Schmid CJ, Wolfe JL (Eds.). Neuronal Cell Apoptosis. Nova Science Publishers Inc., 2011.
- [117].Bennet J.P. Biochemical pathology and pharmacology of Parkinson’s disease. In: Stern M.B., Hurtig H.I., editors. The Comprehensive Management of Parkinson’s Disease. New York: PMA Publishing; 1988. pp. 63–76. [Google Scholar]
- [118].Shaftel S.S., Griffin W.S., O’Banion M.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7. doi: 10.1186/1742-2094-5-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Lukiw W.J., Bazan N.G. Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J Neurosci Res. 1997;50(6):937–945. doi: 10.1002/(SICI)1097-4547(19971215)50:6<937::AID-JNR4>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- [120].Yermakova A.V., O’Banion M.K. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging. 2001;22(6):823–836. doi: 10.1016/s0197-4580(01)00303-7. [DOI] [PubMed] [Google Scholar]
- [121].Combrinck M., Williams J., De Berardinis M.A., Warden D., Puopolo M., Smith A.D., et al. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(1):85–88. doi: 10.1136/jnnp.2005.063131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [122].Montine T.J., Sidell K.R., Crews B.C., Markesbery W.R., Marnett L.J., Roberts L.J., 2nd, et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology. 1999;53(7):1495–1498. doi: 10.1212/wnl.53.7.1495. [DOI] [PubMed] [Google Scholar]
- [123].Wang F, Zhai H, Huang L, Li H, Xu Y, Qiao X, et al. Aspirin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity in primary midbrain cultures. J Mol Neurosci 2011. [Epub ahead of print] [DOI] [PubMed]
- [124].Moghaddam H.F., Hemmati A., Nazari Z., Mehrab H., Abid K.M., Ardestani M.S. Effects of aspirin and celecoxib on rigidity in a rat model of Parkinson’s disease. Pak J Biol Sci. 2007;10(21):3853–3858. doi: 10.3923/pjbs.2007.3853.3858. [DOI] [PubMed] [Google Scholar]
- [125].Maharaj D.S., Saravanan K.S., Maharaj H., Mohanakumar K.P., Daya S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int. 2004;44(5):355–360. doi: 10.1016/s0197-0186(03)00170-0. [DOI] [PubMed] [Google Scholar]
- [126].Beeri MS, Schmeidler J, Lesser GT, Maroukian M, West R, Leung S, et al. Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol Aging 2011. [Epub ahead of print] [DOI] [PMC free article] [PubMed]
- [127].Sonnen J.A., Larson E.B., Walker R.L., Haneuse S., Crane P.K., Gray S.L., et al. Nonsteroidal anti-inflammatory drugs are associated with increased neuritic plaques. Neurology. 2010;75(13):1203–1210. doi: 10.1212/WNL.0b013e3181f52db1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [128].Li Z, Wang Y, Xie Y, Yang Z, Zhang T. Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem Res 2011. [Epub ahead of print] [DOI] [PubMed]
- [129].Hu L.F., Lu M., Tiong C.X., Dawe G.S., Hu G., Bian J.S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9(2):135–146. doi: 10.1111/j.1474-9726.2009.00543.x. [DOI] [PubMed] [Google Scholar]
- [130].Gong Q.H., Wang Q., Pan L.L., Liu X.H., Huang H., Zhu Y.Z. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav. 2010;96(1):52–58. doi: 10.1016/j.pbb.2010.04.006. [DOI] [PubMed] [Google Scholar]
- [131].Lee M., Sparatore A., Del Soldato P., McGeer E., McGeer P.L. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia. 2010;58(1):103–113. doi: 10.1002/glia.20905. [DOI] [PubMed] [Google Scholar]
- [132].Endoh M., Maiese K., Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994;651(1–2):92–100. doi: 10.1016/0006-8993(94)90683-1. [DOI] [PubMed] [Google Scholar]
- [133].CzŁonkowska A., Kohutnicka M., Kurkowska-Jastrzebska I., CzŁonkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration. 1996;5(2):137–143. doi: 10.1006/neur.1996.0020. [DOI] [PubMed] [Google Scholar]
- [134].Cicchetti F., Brownell A.L., Williams K., Chen Y.I., Livni E., Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci. 2002;15(6):991–998. doi: 10.1046/j.1460-9568.2002.01938.x. [DOI] [PubMed] [Google Scholar]
- [135].Sherer T.B., Betarbet R., Kim J.H., Greenamyre J.T. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett. 2003;341(2):87–90. doi: 10.1016/s0304-3940(03)00172-1. [DOI] [PubMed] [Google Scholar]