Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Feb 29;28(2):165–172. doi: 10.1007/s12264-012-1211-0

Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain

Ying Han 1, Yan Li 1, Xing Xiao 1, Jia Liu 1, Xiang-Ling Meng 1, Feng-Yu Liu 1, Guo-Gang Xing 1, You Wan 1,2,3,
PMCID: PMC5560397  PMID: 22466127

Abstract

Objective

Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expression in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain.

Methods

A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the expression of TRPV1 was assessed after treatment with 100 μmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N-terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor].

Results

In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 μmol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression.

Conclusion

Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral afferents plays a role in bone cancer pain.

Keywords: formaldehyde, TRPV1, cancer pain, mitogen-activated protein kinase, phosphatidylinositol 3-kinase

Footnotes

These authors contributed equally to this work.

References

  • [1].Portenoy R.K., Payne D., Jacobsen P. Breakthrough pain: characteristics and impact in patients with cancer pain. Pain. 1999;81:129–134. doi: 10.1016/S0304-3959(99)00006-8. [DOI] [PubMed] [Google Scholar]
  • [2].Ghilardi J.R., Röhrich H., Lindsay T.H., Sevcik M.A., Schwei M.J., Kubota K., et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25:3126–3131. doi: 10.1523/JNEUROSCI.3815-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Kalasz H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem. 2003;3:175–192. doi: 10.2174/1389557033488187. [DOI] [PubMed] [Google Scholar]
  • [4].Ebeler S.E., Clifford A.J., Shibamoto T. Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. J Chromatogr B Biomed Sci Appl. 1997;702:211–215. doi: 10.1016/S0378-4347(97)00369-1. [DOI] [PubMed] [Google Scholar]
  • [5].Spanel P., Smith D., Holland T.A., Al Singary W., Elder J.B. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1354–1359. doi: 10.1002/(SICI)1097-0231(19990730)13:14<1354::AID-RCM641>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • [6].Sabino M.A., Mantyh P.W. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3:15–24. [PubMed] [Google Scholar]
  • [7].Thorndike J., Beck W.S. Production of formaldehyde from N5-methyltetrahydrofolate by normal and leukemic leukocytes. Cancer Res. 1977;37:1125–1132. [PubMed] [Google Scholar]
  • [8].Tong Z., Luo W., Wang Y., Yang F., Han Y., Li H., et al. Tumor tissuederived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS One. 2010;5:e10234. doi: 10.1371/journal.pone.0010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Pei L., Lin C.Y., Dai J.P., Yin G.F. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull. 2007;23:92–100. doi: 10.1007/s12264-007-0013-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Luo H., Cheng J., Han J.S., Wan Y. Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund’s adjuvant in rats. Neuroreport. 2004;15:655–658. doi: 10.1097/00001756-200403220-00016. [DOI] [PubMed] [Google Scholar]
  • [11].Christoph T., Grunweller A., Mika J., Schäfer M.K., Wade E.J., Weihe E., et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun. 2006;350:238–243. doi: 10.1016/j.bbrc.2006.09.037. [DOI] [PubMed] [Google Scholar]
  • [12].Niiyama Y., Kawamata T., Yamamoto J., Omote K., Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience. 2007;148:560–572. doi: 10.1016/j.neuroscience.2007.05.049. [DOI] [PubMed] [Google Scholar]
  • [13].Yu L., Yang F., Luo H., Liu F.Y., Han J.S., Xing G.G., et al. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol Pain. 2008;4:61. doi: 10.1186/1744-8069-4-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Niiyama Y., Kawamata T., Yamamoto J., Furuse S., Namiki A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth. 2009;102:251–258. doi: 10.1093/bja/aen347. [DOI] [PubMed] [Google Scholar]
  • [15].Du Y., Xiao Y., Lu Z.M., Ding J., Xie F., Fu H., et al. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun. 2011;408:32–37. doi: 10.1016/j.bbrc.2011.03.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Xia R., Samad T.A., Btesh J., Jiang L.H., Kays I., Stjernborg L., et al. TRPV1 signaling: mechanistic understanding and therapeutic potential. Curr Top Med Chem. 2011;11:2180–2191. doi: 10.2174/156802611796904843. [DOI] [PubMed] [Google Scholar]
  • [17].Tian L.J., Du Y., Xiao Y., Lv Z.M., Yu Y.Q., Cui X.Y., et al. Mediating roles of the vanilloid receptor TRPV1 in activation of rat primary afferent nociceptive neurons by formaldehyde. Acta Physiol Sin. 2009;61:404–416. [PubMed] [Google Scholar]
  • [18].Svensson C., Part K., Kunnis-Beres K., Kaldmäe M., Fernaeus S.Z., Land T. Pro-survival effects of JNK and p38 MAPK pathways in LPS-induced activation of BV-2 cells. Biochem Biophys Res Commun. 2011;406:488–492. doi: 10.1016/j.bbrc.2011.02.083. [DOI] [PubMed] [Google Scholar]
  • [19].Doya H., Ohtori S., Fujitani M., Saito T., Hata K., Ino H., et al. c-Jun N-terminal kinase activation in dorsal root ganglion contributes to pain hypersensitivity. Biochem Biophys Res Commun. 2005;335:132–138. doi: 10.1016/j.bbrc.2005.07.055. [DOI] [PubMed] [Google Scholar]
  • [20].Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ. Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol 2007: 359–389. [DOI] [PubMed]
  • [21].Ji R.R., Strichartz G. Cell signaling and the genesis of neuropathic pain. Sci STKE. 2004;2004:E14. doi: 10.1126/stke.2522004re14. [DOI] [PubMed] [Google Scholar]
  • [22].Ji R.R., Samad T.A., Jin S.X., Schmoll R., Woolf C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 2002;36:57–68. doi: 10.1016/S0896-6273(02)00908-X. [DOI] [PubMed] [Google Scholar]
  • [23].Morenilla-Palao C., Planells-Cases R., Garcia-Sanz N., Ferrer-Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem. 2004;279:25665–25672. doi: 10.1074/jbc.M311515200. [DOI] [PubMed] [Google Scholar]
  • [24].Zhuang Z.Y., Xu H., Clapham D.E., Ji R.R. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci. 2004;24:8300–8309. doi: 10.1523/JNEUROSCI.2893-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Amadesi S., Cottrell G.S., Divino L., Chapman K., Grady E.F., Bautista F., et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C epsilon- and A-dependent mechanisms in rats and mice. J Physiol. 2006;575(Pt2):555–571. doi: 10.1113/jphysiol.2006.111534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Zhang H., Cang C.L., Kawasaki Y., Liang L.L., Zhang Y.Q., Ji R.R., et al. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKC epsilon: a novel pathway for heat hyperalgesia. J Neurosci. 2007;27:12067–12077. doi: 10.1523/JNEUROSCI.0496-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Feick P., Haas S.R., Singer M.V., Böcker U. Low-dose exposure of intestinal epithelial cells to formaldehyde results in MAP kinase activation and molecular alteration of the focal adhesion protein paxillin. Toxicology. 2006;219:60–72. doi: 10.1016/j.tox.2005.11.004. [DOI] [PubMed] [Google Scholar]
  • [28].Lim S.K., Kim J.C., Moon C.J., Kim G.Y., Han H.J., Park S.H. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells. Toxicology. 2010;271:100–106. doi: 10.1016/j.tox.2010.03.011. [DOI] [PubMed] [Google Scholar]
  • [29].Medhurst S.J., Walker K., Bowes M., Kidd B.L., Glatt M., Muller M., et al. A rat model of bone cancer pain. Pain. 2002;96:129–140. doi: 10.1016/S0304-3959(01)00437-7. [DOI] [PubMed] [Google Scholar]
  • [30].Fujita M., Ueda T., Handa T. Generation of formaldehyde by pharmaceutical excipients and its absorption by meglumine. Chem Pharm Bull (Tokyo) 2009;57:1096–1099. doi: 10.1248/cpb.57.1096. [DOI] [PubMed] [Google Scholar]
  • [31].O’Neil K.A., Miller F.R., Barder T.J., Lubman D.M. Profiling the progression of cancer: separation of microsomal proteins in MCF10 breast epithelial cell lines using nonporous chromatophoresis. Proteomics. 2003;3:1256–1269. doi: 10.1002/pmic.200300446. [DOI] [PubMed] [Google Scholar]
  • [32].Wang Y. The functional regulation of TRPV1 and its role in pain sensitization. Neurochem Res. 2008;33:2008–2012. doi: 10.1007/s11064-008-9750-5. [DOI] [PubMed] [Google Scholar]
  • [33].Cheng J.K., Ji R.R. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res. 2008;33:1970–1978. doi: 10.1007/s11064-008-9711-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Bron R., Klesse L.J., Shah K., Parada L.F., Winter J. Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Mol Cell Neurosci. 2003;22:118–132. doi: 10.1016/S1044-7431(02)00022-2. [DOI] [PubMed] [Google Scholar]
  • [35].Chen Y., Geis C., Sommer C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci. 2008;28:5836–5845. doi: 10.1523/JNEUROSCI.4170-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Pezet S., Marchand F., D’Mello R., Grist J., Clark A.K., Malcangio M., et al. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions. J Neurosci. 2008;28:4261–4270. doi: 10.1523/JNEUROSCI.5392-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Bonnas C, Specht K, Spleiss O, Froehner S, Dietmann G, Krüger JM, et al. Effects of cold ischemia and inflammatory tumor microenvironment on detection of PI3K/AKT and MAPK pathway activation patterns in clinical cancer samples. Int J Cancer 2011 [Epub ahead of print] [DOI] [PubMed]
  • [38].Shi T.J., Huang P., Mulder J., Ceccatelli S., Hokfelt T. Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals. 2009;17:203–212. doi: 10.1159/000210400. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES