Abstract
Objective
Melittin is the main peptide in bee venom and causes both persistent spontaneous nociception and pain hypersensitivity. Our recent studies indicated that both transient receptor potential (TRP) vanilloid receptor 1 (TRPV1) and canonical TRPs (TRPCs) are involved in mediating the melittin-induced activation of different subpopulations of primary nociceptive cells. Here, we further determined whether TRPC channels are involved in melittin-induced inflammatory nociceptive responses in behavioral assays.
Methods
The anti-nociceptive and anti-hyperalgesic effects of localized peripheral administration of three doses of the non-selective TRPC antagonist, SKF-96365 (1-{β-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenyl}-1H-imidazole hydrochloride), were evaluated in melittin tests. Pain-related behaviors were rated by counting the number of paw flinches, and measuring paw withdrawal thermal latency (s) and paw withdrawl mechanical threshold (g), over a 1-h time-course.
Results
Localized peripheral SKF-96365 given before melittin prevented, and given after melittin significantly suppressed, the melittin-evoked persistent spontaneous nociception. Pre-blockade and post-suppression of activation of primary nociceptive activity resulted in decreased hypersensitivity to both thermal and mechanical stimuli applied to the primary injury site of the ipsilateral hindpaw, despite dose-effect differences between thermal and mechanical hyperalgesia. However, local administration of SKF-96365 into the contralateral hindpaw had no significant effect on any pain-associated behaviors. In addition, SKF-96365 had no effect on baseline threshold for either thermal or mechanical sensitivity under normal conditions.
Conclusion
Besides TRPV1, SKF-96365-sensitive TRPC channels might also be involved in the pathophysiological processing of melittin-induced inflammatory pain and hypersensitivity. Therapeutically, SKF-96365 is equally effective in preventing primary thermal and mechanical hyperalgesia as well as persistent spontaneous nociception. However, this drug is likely to be more effective in the relief of thermal hyperalgesia than mechanical hyperalgesia when applied 5 min after establishment of primary afferent activation.
Keywords: TRPC channels, melittin, persistent spontaneous nociception, primary thermal hyperalgesia, primary mechanical hyperalgesia
Footnotes
These authors contributed equally to this work.
Contributor Information
Su-Min Guan, Phone: +86-29-84777942, Phone: +86-29-84776120, FAX: +86-29-84777945, FAX: +86-29-83223047, Email: jchsmg@fmmu.edu.cn.
Jun Chen, Phone: +86-29-84777942, Phone: +86-29-84776120, FAX: +86-29-84777945, FAX: +86-29-83223047, Email: junchen@fmmu.edu.cn.
References
- [1].Clapham D.E. TRP channels as cellular sensors. Nature. 2003;426:517–524. doi: 10.1038/nature02196. [DOI] [PubMed] [Google Scholar]
- [2].Pedersen S.F., Owsianik G., Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–252. doi: 10.1016/j.ceca.2005.06.028. [DOI] [PubMed] [Google Scholar]
- [3].Ramsey I.S., Delling M., Clapham D.E. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–647. doi: 10.1146/annurev.physiol.68.040204.100431. [DOI] [PubMed] [Google Scholar]
- [4].Putney J.W. Physiological mechanisms of TRPC activation. Pflugers Arch. 2005;451:29–34. doi: 10.1007/s00424-005-1416-4. [DOI] [PubMed] [Google Scholar]
- [5].Riccio A., Medhurst A.D., Mattei C., Kelsell R.E., Calver A.R., Randall A.D., et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res. 2002;109:95–104. doi: 10.1016/S0169-328X(02)00527-2. [DOI] [PubMed] [Google Scholar]
- [6].Chung Y.H., Sun A.H., Kim D., Hoon S.D., Su K.S., Yong K.K., et al. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res. 2006;1085:132–137. doi: 10.1016/j.brainres.2006.02.087. [DOI] [PubMed] [Google Scholar]
- [7].Elg S., Marmigere F., Mattsson J.P., Ernfors P. Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol. 2007;503:35–46. doi: 10.1002/cne.21351. [DOI] [PubMed] [Google Scholar]
- [8].Kress M., Karasek J., Ferrer-Montiel A.V., Scherbakov N., Haberberger R.V. TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem Cell Biol. 2008;130:655–667. doi: 10.1007/s00418-008-0477-9. [DOI] [PubMed] [Google Scholar]
- [9].Staaf S., Oerther S., Lucas G., Mattsson J.P., Ernfors P. Differential regulation of TRP channels in a rat model of neuropathic pain. Pain. 2009;144:187–199. doi: 10.1016/j.pain.2009.04.013. [DOI] [PubMed] [Google Scholar]
- [10].Ambudkar I.S., Bandyopadhyay B.C., Liu X., Lockwich T.P., Paria B., Ong H.L. Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium. 2006;40:495–504. doi: 10.1016/j.ceca.2006.08.011. [DOI] [PubMed] [Google Scholar]
- [11].Montell C. Drosophila TRP channels. Pflugers Arch. 2005;451:19–28. doi: 10.1007/s00424-005-1426-2. [DOI] [PubMed] [Google Scholar]
- [12].Selvaraj S., Sun Y., Singh B.B. TRPC channels and their implication in neurological diseases. CNS Neurol Disord Drug Targets. 2010;9:94–104. doi: 10.2174/187152710790966650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Tai Y., Feng S., Du W., Wang Y. Functional roles of TRPC channels in the developing brain. Pflugers Arch. 2009;458:283–289. doi: 10.1007/s00424-008-0618-y. [DOI] [PubMed] [Google Scholar]
- [14].Tai Y., Feng S., Ge R., Du W., Zhang X., He Z., et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci. 2008;121:2301–2307. doi: 10.1242/jcs.026906. [DOI] [PubMed] [Google Scholar]
- [15].Chen J., Lariviere W.R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol. 2010;92:151–183. doi: 10.1016/j.pneurobio.2010.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Du Y.R., Xiao Y., Lu Z.M., Ding J., Xie F., Fu H., et al. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun. 2011;408:32–37. doi: 10.1016/j.bbrc.2011.03.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Habermann E. Bee and wasp venoms. Science. 1972;177:314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
- [18].Habermann E. Pharmacologically important substances in the bee- and wasp-venoms. Pharm Unserer Zeit. 1974;3:145–151. doi: 10.1002/pauz.19740030502. [DOI] [PubMed] [Google Scholar]
- [19].Lariviere W.R., Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996;66:271–277. doi: 10.1016/0304-3959(96)03075-8. [DOI] [PubMed] [Google Scholar]
- [20].Chen Y.N., Li K.C., Li Z., Shang G.W., Liu D.N., Lu Z.M., et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience. 2006;138:631–640. doi: 10.1016/j.neuroscience.2005.11.022. [DOI] [PubMed] [Google Scholar]
- [21].Li K.C., Chen J. Altered pain-related behaviors and spinal neuronal responses produced by s. c. injection of melittin in rats. Neuroscience. 2004;126:753–762. doi: 10.1016/j.neuroscience.2004.03.050. [DOI] [PubMed] [Google Scholar]
- [22].Ding J., Xiao Y., Lu D., Du Y.R., Cui X.Y., Chen J. Effects of SKF- 96365, a TRPC inhibitor, on melittin-induced inward current and intracellular Ca2+ rise in primary sensory cells. Neurosci Bull. 2011;27:135–142. doi: 10.1007/s12264-011-1018-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Chen J., Luo C., Li H., Chen H. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain. 1999;83:67–76. doi: 10.1016/S0304-3959(99)00075-5. [DOI] [PubMed] [Google Scholar]
- [24].Merritt J.E., Armstrong W.P., Benham C.D., Hallam T.J., Jacob R., Jaxa-Chamiec A., et al. SKF 96365, a novel inhibitor of receptormediated calcium entry. Biochem J. 1990;271:515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Putney J.W., Jr. Pharmacology of capacitative calcium entry. Mol Interv. 2001;1:84–94. [PubMed] [Google Scholar]
- [26].Singh A., Hildebrand M.E., Garcia E., Snutch T.P. The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacology. 2010;160:1464–1475. doi: 10.1111/j.1476-5381.2010.00786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Zhu X., Jiang M., Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998;273:133–142. doi: 10.1074/jbc.273.1.133. [DOI] [PubMed] [Google Scholar]
- [28].Boulay G., Zhu X., Peyton M., Jiang M., Hurst R., Stefani E., et al. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem. 1997;272:29672–29680. doi: 10.1074/jbc.272.47.29672. [DOI] [PubMed] [Google Scholar]
- [29].Clapham D.E., Julius D., Montell C., Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev. 2005;57:427–450. doi: 10.1124/pr.57.4.6. [DOI] [PubMed] [Google Scholar]
- [30].Nilius B., Prenen J., Vennekens R., Hoenderop J.G., Bindels R.J., Droogmans G. Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol. 2001;34:453–462. doi: 10.1038/sj.bjp.0704272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Harteneck C., Gollasch M. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol. 2011;12:35–41. doi: 10.2174/138920111793937943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Lu Z.M., Xie F., Fu H., Liu M.G., Cao F.L., Hao J., et al. Roles of peripheral P2X and P2Y receptors in the development of melittininduced nociception and hypersensitivity. Neurochem Res. 2008;33:2085–2091. doi: 10.1007/s11064-008-9689-6. [DOI] [PubMed] [Google Scholar]
- [33].Yu Y.Q., Chen J. Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neurosci Lett. 2005;381:194–198. doi: 10.1016/j.neulet.2005.02.033. [DOI] [PubMed] [Google Scholar]
- [34].Li M.M., Yu Y.Q., Fu H., Xie F., Xu L.X., Chen J. Extracellular signalregulated kinases mediate melittin-induced hypersensitivity of spinal neurons to chemical and thermal but not mechanical stimuli. Brain Res Bull. 2008;77:227–232. doi: 10.1016/j.brainresbull.2008.07.009. [DOI] [PubMed] [Google Scholar]
- [35].Hao J., Liu M.G., Yu Y.Q., Cao F.L., Li Z., Lu Z.M., et al. Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience. 2008;152:1067–1075. doi: 10.1016/j.neuroscience.2007.12.038. [DOI] [PubMed] [Google Scholar]
- [36].Trebak M., Vazquez G., Bird G.J., Putney J.W., Jr. The TRPC3/6/7 subfamily of cation channels. Cell Calcium. 2003;33:451–461. doi: 10.1016/S0143-4160(03)00056-3. [DOI] [PubMed] [Google Scholar]
- [37].Eder P., Groschner K. TRP3/6/7: Topical aspects of biophysics and pathophysiology. Channels. 2008;2:94–99. doi: 10.4161/chan.2.2.6015. [DOI] [PubMed] [Google Scholar]
- [38].Alvarez J., Coulombe A., Cazorla O., Ugur M., Rauzier J.M., Magyar J., et al. ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;295:H21–28. doi: 10.1152/ajpheart.00135.2008. [DOI] [PubMed] [Google Scholar]
- [39].Dietrich A., Kalwa H., Fuchs B., Grimminger F., Weissmann N., Gudermann T. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007;42:233–244. doi: 10.1016/j.ceca.2007.02.009. [DOI] [PubMed] [Google Scholar]
- [40].Gottlieb P., Folgering J., Maroto R., Raso A., Wood T.G., Kurosky A., et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch. 2008;455:1097–1103. doi: 10.1007/s00424-007-0359-3. [DOI] [PubMed] [Google Scholar]
- [41].Spassova M.A., Hewavitharana T., Xu W., Soboloff J., Gill D.L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A. 2006;103:16586–16591. doi: 10.1073/pnas.0606894103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Alessandri-Haber N., Dina O.A., Chen X., Levine J.D. TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci. 2009;29:6217–6228. doi: 10.1523/JNEUROSCI.0893-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]