Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Mar 30;28(2):182–192. doi: 10.1007/s12264-012-1216-8

Disruption of δ-opioid receptor phosphorylation at Threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity

Hai-Jing Chen 1, Wei-Yan Xie 2, Fang Hu 1, Ying Zhang 1, Jun Wang 3, Yun Wang 1,
PMCID: PMC5560399  PMID: 22466129

Abstract

Objective

Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund’s adjuvant (CFA)-induced inflammatory pain and morphine tolerance.

Methods

Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain.

Results

Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR-but not μ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain.

Conclusion

Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.

Keywords: inflammatory hypersensitivity, cyclin-dependent kinase 5, δ-opioid receptor, morphine tolerance

Footnotes

These authors contributed equally to this work.

References

  • [1].Abdelhamid E.E., Sultana M., Portoghese P.S., Takemori A.E. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991;258:299–303. [PubMed] [Google Scholar]
  • [2].Fundytus M.E., Schiller P.W., Shapiro M., Weltrowska G., Coderre T.J. Attenuation of morphine tolerance and dependence with the highly selective δ-opioid receptor antagonist TIPP[Ψ] Eur J Pharmacol. 1995;286:105–108. doi: 10.1016/0014-2999(95)00554-X. [DOI] [PubMed] [Google Scholar]
  • [3].Kest B., Lee C.E., McLemore G.L., Inturrisi C.E. An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull. 1996;39(3):185–188. doi: 10.1016/0361-9230(95)02092-6. [DOI] [PubMed] [Google Scholar]
  • [4].Zhu Y., King M.A., Schuller A.G., Nitsche J.F., Reidl M., Elde R.P., et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron. 1999;24:243–252. doi: 10.1016/S0896-6273(00)80836-3. [DOI] [PubMed] [Google Scholar]
  • [5].Nitsche J.F., Schuller A.G., King M.A., Zengh M., Pasternak G.W., Pintar J.E. Genetic dissociation of opiate tolerance and physical dependence in δ-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci. 2002;22:10906–10913. doi: 10.1523/JNEUROSCI.22-24-10906.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Guan J.S., Xu Z.Z., Gao H., He S.Q., Ma G.Q., Sun T., et al. Interaction with vesicle luminal protachykinin regulates surface expression of δ-opioid receptors and opioid analgesia. Cell. 2005;122:619–631. doi: 10.1016/j.cell.2005.06.010. [DOI] [PubMed] [Google Scholar]
  • [7].Rozenfeld R., Devi L.A. Receptor heterodimerization leads to a switch in signaling: β-arrestin2-mediated ERK activation by μ-δ opioid receptor heterodimers. FASEB J. 2007;21:2455–2465. doi: 10.1096/fj.06-7793com. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].He S.Q., Zhang Z.N., Guan J.S., Liu H.R., Zhao B., Wang H.B., et al. Facilitation of μ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation. Neuron. 2011;69:120–131. doi: 10.1016/j.neuron.2010.12.001. [DOI] [PubMed] [Google Scholar]
  • [9].Pareek T.K., Kulkarni A.B. Cdk5: a new player in pain signaling. Cell Cycle. 2006;5:585–588. doi: 10.4161/cc.5.6.2578. [DOI] [PubMed] [Google Scholar]
  • [10].Xie W.Y., He Y., Yang Y.R., Li Y.F., Kang K., Xing B.M., et al. Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the δ-opioid receptor: impaired receptor function and attenuated morphine antinociceptive tolerance. J Neurosci. 2009;29:3551–3564. doi: 10.1523/JNEUROSCI.0415-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Stein C., Schafer M., Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9:1003–1008. doi: 10.1038/nm908. [DOI] [PubMed] [Google Scholar]
  • [12].Storkson R.V., Kjorsvik A., Tjolsen A., Hole K. Lumbar catheterization of the spinal subarachnoid space in the rat. J Neurosci Methods. 1996;65:167–172. doi: 10.1016/0165-0270(95)00164-6. [DOI] [PubMed] [Google Scholar]
  • [13].Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hypersensitivity. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. [DOI] [PubMed] [Google Scholar]
  • [14].Yang Y.R., He Y., Zhang Y., Li Y., Li Y., Han Y., et al. Activation of cyclin-dependent kinase 5 (Cdk5) in primary sensory and dorsal horn neurons by peripheral inflammation contributes to heat hyperalgesia. Pain. 2007;127:109–120. doi: 10.1016/j.pain.2006.08.008. [DOI] [PubMed] [Google Scholar]
  • [15].Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med. 1995;332:1685–1690. doi: 10.1056/NEJM199506223322506. [DOI] [PubMed] [Google Scholar]
  • [16].Leanez S., Hervera A., Pol O. Peripheral antinociceptive effects of μ- and δ-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain. Eur J Pharmacol. 2009;602:41–49. doi: 10.1016/j.ejphar.2008.11.019. [DOI] [PubMed] [Google Scholar]
  • [17].Stein C., Millan M.J., Shippenberg T.S., Peter K., Herz A. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther. 1989;248:1269–1275. [PubMed] [Google Scholar]
  • [18].Pol O., Ferrer I., Puig M.M. Diarrhea associated with intestinal inflammation increases the potency of mu and delta opioids on the inhibition of gastrointestinal transit in mice. J Pharmacol Exp Ther. 1994;270:386–391. [PubMed] [Google Scholar]
  • [19].Cahill C.M., Holdridge S.V., Morinville A. Trafficking of δ-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci. 2007;28:23–31. doi: 10.1016/j.tips.2006.11.003. [DOI] [PubMed] [Google Scholar]
  • [20].Ji R.R., Zhang Q., Law P.Y., Low H.H., Elde R., Hokfelt T. Expression of μ-, δ-, and κ-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci. 1995;15:8156–8166. doi: 10.1523/JNEUROSCI.15-12-08156.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Maekawa K., Minami M., Masuda T., Satoh M. Expression of μ- and κ-, but not δ-, opioid receptor mRNAs is enhanced in the spinal dorsal horn of the arthritic rats. Pain. 1996;64:365–371. doi: 10.1016/0304-3959(95)00132-8. [DOI] [PubMed] [Google Scholar]
  • [22].Goff J.R., Burkey A.R., Goff D.J., Jasmin L. Reorganization of the spinal dorsal horn in models of chronic pain: correlation with behaviour. Neuroscience. 1998;82:559–574. doi: 10.1016/S0306-4522(97)00298-4. [DOI] [PubMed] [Google Scholar]
  • [23].Cahill C.M., Morinville A., Hoffert C., O’Donnell D., Beaudet A. Up regulation and trafficking of δ opioid receptor in a model of chronic inflammation: implications for pain control. Pain. 2003;101:199–208. doi: 10.1016/S0304-3959(02)00333-0. [DOI] [PubMed] [Google Scholar]
  • [24].Pol O., Palacio J.R., Puig M.M. The expression of δ- and κ-opioid receptor is enhanced during intestinal inflammation in mice. J Pharmacol Exp Ther. 2003;306:455–462. doi: 10.1124/jpet.103.049346. [DOI] [PubMed] [Google Scholar]
  • [25].Martin M., Matifas A., Maldonado R., Kieffer B.L. Acute antinociceptive responses in single and combinatorial opioid receptor knockout mice: distinct mu, delta and kappa tones. Eur J Neurosci. 2003;17:701–708. doi: 10.1046/j.1460-9568.2003.02482.x. [DOI] [PubMed] [Google Scholar]
  • [26].Desmeules J.A., Kayser V., Gacel G., Guilbaud G., Roques B.P. The highly selective δ agonist BUBU induces an analgesic effect in normal and arthritic rat and this action is not affected by repeated administration of low doses of morphine. Brain Res. 1993;611:243–248. doi: 10.1016/0006-8993(93)90509-L. [DOI] [PubMed] [Google Scholar]
  • [27].Stewart P.E., Hammond D.L. Activation of spinal delta-1 or delta-2 opioid receptors reduces carrageenan-induced hypersensitivity in the rat. J Pharmacol Exp Ther. 1994;268:701–708. [PubMed] [Google Scholar]
  • [28].Fraser G.L., Gaudreau G.A., Clarke P.B., Menard D.P., Perkins M.N. Antihyperalgesic effects of δ opioid agonists in a rat model of chronic inflammation. Br J Pharmacol. 2000;129:1668–1672. doi: 10.1038/sj.bjp.0703248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Hurley R.W., Hammond D.L. The analgesic effects of supraspinal μ and δ opioid receptor agonists are potentiated during persistent inflammation. J Neurosci. 2000;20:1249–1259. doi: 10.1523/JNEUROSCI.20-03-01249.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Qiu C., Sora I., Ren K., Uhl G., Dubner R. Enhanced δ-opioid receptor-mediated antinociception in μ-opioid receptor-deficient mice. Eur J Pharmacol. 2000;387:163–169. doi: 10.1016/S0014-2999(99)00813-4. [DOI] [PubMed] [Google Scholar]
  • [31].Brandt M.R., Furness M.S., Mello N.K., Rice K.C., Negus S.S. Antinociceptive effects of δ-opioid agonists in Rhesus monkeys: effects on chemically induced thermal hypersensitivity. J Pharmacol Exp Ther. 2001;296:939–946. [PubMed] [Google Scholar]
  • [32].Petrillo P., Angelici O., Bingham S., Ficalora G., Garnier M., Zaratin P.F., et al. Evidence for a selective role of the δ-opioid agonist [8R-(4bS*,8aα,8aβ, 12bβ)]7,10-Dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoli ne hydrochloride (SB-235863) in blocking hypersensitivity associated with inflammatory and neuropathic pain responses. J Pharmacol Exp Ther. 2003;307:1079–1089. doi: 10.1124/jpet.103.055590. [DOI] [PubMed] [Google Scholar]
  • [33].Wang C.H., Lee T.H., Tsai Y.J., Liu J.K., Chen Y.J., Yang L.C., et al. Intrathecal cdk5 inhibitor, roscovitine, attenuates morphine antinociceptive tolerance in rats. Acta Pharmacol Sin. 2004;25:1027–1030. [PubMed] [Google Scholar]
  • [34].Parkitna J.R., Obara I., Wawrzczak-Bargiela A., Makuch W., Przewlocka B., Przewlocki R. Effects of glycogen synthase kinase 3β and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. J Pharmacol Exp Ther. 2006;319:832–839. doi: 10.1124/jpet.106.107581. [DOI] [PubMed] [Google Scholar]
  • [35].Roy S., Guo X., Kelschenbach J., Liu Y., Loh H.H. In vivo activation of a mutant μ-opioid receptor by naltrexone produces a potent analgesic effect but no tolerance: role of μ-receptor activation and δ-receptor blockade in morphine tolerance. J Neurosci. 2005;25:3229–3233. doi: 10.1523/JNEUROSCI.0332-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Krupnick J.G., Benovic J.L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319. doi: 10.1146/annurev.pharmtox.38.1.289. [DOI] [PubMed] [Google Scholar]
  • [37].Liu J.G., Anand K.J. Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev. 2001;38:1–19. doi: 10.1016/S0165-0173(01)00057-1. [DOI] [PubMed] [Google Scholar]
  • [38].Pradhan A.A., Becker J.A., Scherrer G., Tryoen-Toth P., Filliol D., Matifas A., et al. In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One. 2009;4:e5425. doi: 10.1371/journal.pone.0005425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Eisinger D.A., Ammer H., Schulz R. Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci. 2002;22:10192–10200. doi: 10.1523/JNEUROSCI.22-23-10192.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Patwardhan A.M., Berg K.A., Akopain A.N., Jeske N.A., Gamper N., Clarke W.P., et al. Bradykinin-induced functional competence and trafficking of the δ-opioid receptor in trigeminal nociceptors. J Neurosci. 2005;25:8825–8832. doi: 10.1523/JNEUROSCI.0160-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Patwardhan A.M., Diogenes A., Berg K.A., Fehrenbacher J.C., Clarke W.P., Akopian A.N., et al. PAR-2 agonists activate trigeminal nociceptors and induce functional competence in the delta opioid receptor. Pain. 2006;125:114–124. doi: 10.1016/j.pain.2006.05.007. [DOI] [PubMed] [Google Scholar]
  • [42].Gendron L., Lucido A.L., Mennicken F., O’Donnell D., Vincent J.P., Stroh T., et al. Morphine and pain-related stimuli enhance cell surface availability of somatic δ-opioid receptors in rat dorsal root ganglia. J Neurosci. 2006;26:953–962. doi: 10.1523/JNEUROSCI.3598-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Rozenfeld R., Abul-Husn N.S., Gomez I., Devi L.A. An emerging role for the delta opioid receptor in the regulation of mu opioid receptor function. ScientificWorldJournal. 2007;7:64–73. doi: 10.1100/tsw.2007.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Fields H.L., Emson P.C., Leigh B.K., Gilbert R.F., Iversen L.L. Multiple opiate receptor sites on primary afferent fibres. Nature. 1980;284:351–353. doi: 10.1038/284351a0. [DOI] [PubMed] [Google Scholar]
  • [45].Egan T.M., North R.A. Both mu and delta opiate receptors exist on the same neuron. Science. 1981;214:923–924. doi: 10.1126/science.6272393. [DOI] [PubMed] [Google Scholar]
  • [46].Zieglgansberger W., French E.D., Mercuri N., Pelayo F., Williams J.T. Multiple opiate receptors on neurons of the mammalian central nervous system. In vivo and in vitro studies. Life Sci. 1982;31:2343–2346. doi: 10.1016/0024-3205(82)90152-7. [DOI] [PubMed] [Google Scholar]
  • [47].Arvidsson U., Dado R.J., Riedl M., Lee J.H., Law P.Y., Loh H.H., et al. δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci. 1995;15:1215–1235. doi: 10.1523/JNEUROSCI.15-02-01215.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Cheng P.Y., Liu-Chen L.Y., Pickel V.M. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res. 1997;778:367–380. doi: 10.1016/S0006-8993(97)00891-3. [DOI] [PubMed] [Google Scholar]
  • [49].George S.R., Fan T., Xie Z., Tse R., Tam V., Varghese G., et al. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem. 2000;275:26128–26135. doi: 10.1074/jbc.M000345200. [DOI] [PubMed] [Google Scholar]
  • [50].Gomes I., Jordan B.A., Gupta A., Trapaidze N., Nagy V., Devi L.A. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci. 2000;20:RC110. doi: 10.1523/JNEUROSCI.20-22-j0007.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Gomes I., Gupta A., Filipovska J., Szeto H.H., Pintar J.E., Devi L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A. 2004;101:5135–5139. doi: 10.1073/pnas.0307601101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Morinville A., Cahill C.M., Kieffer B., Collier B., Beaudet A. Muopioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain. 2004;109:266–273. doi: 10.1016/j.pain.2004.01.011. [DOI] [PubMed] [Google Scholar]
  • [53].Gendron L., Pintar J.E., Chavkin C. Essential role of mu opioid receptor in the regulation of delta opioid receptor-mediated antihyperalgesia. Neuroscience. 2007;150:807–817. doi: 10.1016/j.neuroscience.2007.09.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [54].Zhang X., Bao L., Guan J.S. Role of delivery and trafficking of deltaopioid peptide receptors in opioid analgesia and tolerance. Trends Pharmacol Sci. 2006;27:324–329. doi: 10.1016/j.tips.2006.04.005. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES