Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Nov 14;28(6):789–800. doi: 10.1007/s12264-012-1283-x

Phosphoinositide pathway and the signal transduction network in neural development

Vincenza Rita Lo Vasco 1,
PMCID: PMC5561820  PMID: 23152330

Abstract

The development of the nervous system is under the strict control of a number of signal transduction pathways, often interconnected. Among them, the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention. Besides their well-known role in the regulation of intracellular calcium levels, PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways, contributing to a specific and complex network in the developing nervous system. In this review, the connections of PI signalling with further transduction pathways acting during neural development are discussed, with special regard to the role of the PI-PLC family of enzymes.

Keywords: phospholipase C, CNS development, calcium release

References

  • [1].Annunziato L., Amoroso S., Pannaccione A., Cataldi M., Pignataro G., D’Alessio A., et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett. 2003;139:125–133. doi: 10.1016/S0378-4274(02)00427-7. [DOI] [PubMed] [Google Scholar]
  • [2].Kiryushko D., Novitskaya V., Soroka V., Klingelhofer J., Lukanidin E., Berezin V., et al. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein. Mol Cell Biol. 2006;26:3625–3638. doi: 10.1128/MCB.26.9.3625-3638.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Frebel K., Wiese S. Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans. 2006;34:1287–1290. doi: 10.1042/BST0341287. [DOI] [PubMed] [Google Scholar]
  • [4].Suh P.G., Park J.I., Manzoli L., Cocco L., Peak J.C., Katan M., et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 2008;41:415–434. doi: 10.5483/BMBRep.2008.41.6.415. [DOI] [PubMed] [Google Scholar]
  • [5].Schmid R.S., Pruitt W.M., Maness P.F. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci. 2000;20:4177–4188. doi: 10.1523/JNEUROSCI.20-11-04177.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Ledeen R.W., Wu G. Nuclear lipids: key signaling effectors in the nervous system and other tissues. J Lipid Res. 2004;45:1–8. doi: 10.1194/jlr.R300015-JLR200. [DOI] [PubMed] [Google Scholar]
  • [7].Comer F.I., Parent C.A. Phosphoinositides specify polarity during epithelial organ development. Cell. 2007;128:239–240. doi: 10.1016/j.cell.2007.01.010. [DOI] [PubMed] [Google Scholar]
  • [8].Hokin M.R., Hokin L.E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem. 1953;203:967–977. [PubMed] [Google Scholar]
  • [9].Berridge M.J., Irvine R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312:315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  • [10].Noh D.Y., Shin S.H., Rhee S.G. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta. 1995;1242:99–113. doi: 10.1016/0304-419x(95)00006-0. [DOI] [PubMed] [Google Scholar]
  • [11].Bunney T.D., Katan M. PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci. 2011;36:88–96. doi: 10.1016/j.tibs.2010.08.003. [DOI] [PubMed] [Google Scholar]
  • [12].Tang C.H., Yang R.S., Fu W.M. Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem. 2005;280:22907–22916. doi: 10.1074/jbc.M500130200. [DOI] [PubMed] [Google Scholar]
  • [13].Hisatsune C., Nakamura K., Kuroda Y., Nakamura T., Mikoshiba K. Amplification of Ca2+ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. J Biol Chem. 2005;280:11723–11730. doi: 10.1074/jbc.M409535200. [DOI] [PubMed] [Google Scholar]
  • [14].Katan M. New insights into the families of PLC enzymes: looking back and going forward. Biochem J. 2005;391:e7–9. doi: 10.1042/BJ20051506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Cockcroft S., Thomas G.M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992;288(Pt1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Irino Y., Cho H., Nakamura Y., Nakahara M., Furutani M., Suh P.G., et al. Phospholipase C delta-type consists of three isozymes: bovine PLCdelta2 is a homologue of human/mouse PLCdelta4. Biochem Biophys Res Commun. 2004;320:537–543. doi: 10.1016/j.bbrc.2004.05.206. [DOI] [PubMed] [Google Scholar]
  • [17].Stewart A.J., Mukherjee J., Roberts S.J., Lester D., Farquharson C. Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. Int J Mol Med. 2005;15:117–121. [PubMed] [Google Scholar]
  • [18].Suh B.C., Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol. 2005;15:370–378. doi: 10.1016/j.conb.2005.05.005. [DOI] [PubMed] [Google Scholar]
  • [19].Exton J.H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol. 1996;36:481–509. doi: 10.1146/annurev.pa.36.040196.002405. [DOI] [PubMed] [Google Scholar]
  • [20].Gratacap M.P., Payrastre B., Viala C., Mauco G., Plantavid M., Chap H. Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets. J Biol Chem. 1998;273:24314–24321. doi: 10.1074/jbc.273.38.24314. [DOI] [PubMed] [Google Scholar]
  • [21].Mizuguchi M., Yamada M., Kim S.U., Rhee S.G. Phospholipase C isozymes in neurons and glial cells in culture: an immunocytochemical and immunochemical study. Brain Res. 1991;548:35–40. doi: 10.1016/0006-8993(91)91103-8. [DOI] [PubMed] [Google Scholar]
  • [22].Adamski F.M., Timms K.M., Shieh B.H. A unique isoform of phospholipase Cbeta4 highly expressed in the cerebellum and eye. Biochim Biophys Acta. 1999;1444:55–60. doi: 10.1016/S0167-4781(98)00260-7. [DOI] [PubMed] [Google Scholar]
  • [23].Miyata M., Kashiwadani H., Fukaya M., Hayashi T., Wu D., Suzuki T., et al. Role of thalamic phospholipase C[beta]4 mediated by metabotropic glutamate receptor type 1 in inflammatory pain. J Neurosci. 2003;23:8098–8108. doi: 10.1523/JNEUROSCI.23-22-08098.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Marzban H., Chung S., Watanabe M., Hawkes R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–871. doi: 10.1002/cne.21352. [DOI] [PubMed] [Google Scholar]
  • [25].McOmish C.E., Burrows E., Howard M., Scarr E., Kim D., Shin H.S., et al. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry. 2008;13:661–672. doi: 10.1038/sj.mp.4002046. [DOI] [PubMed] [Google Scholar]
  • [26].McOmish C.E., Burrows E.L., Howard M., Hannan A.J. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus. 2008;18:824–834. doi: 10.1002/hipo.20443. [DOI] [PubMed] [Google Scholar]
  • [27].Ruiz de Azua I., del Olmo E., Pazos A., Salles J. Transmembrane signaling through phospholipase C-beta in the developing human prefrontal cortex. J Neurosci Res. 2006;84:13–26. doi: 10.1002/jnr.20858. [DOI] [PubMed] [Google Scholar]
  • [28].Fukaya M., Uchigashima M., Nomura S., Hasegawa Y., Kikuchi H., Watanabe M. Predominant expression of phospholipase Cbeta1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur J Neurosci. 2008;28:1744–1759. doi: 10.1111/j.1460-9568.2008.06495.x. [DOI] [PubMed] [Google Scholar]
  • [29].Pawelczyk T. Isozymes delta of phosphoinositide-specific phospholipase C. Acta Biochim Pol. 1999;46:91–98. [PubMed] [Google Scholar]
  • [30].Ananthanarayanan B., Das S., Rhee S.G., Murray D., Cho W. Membrane targeting of C2 domains of phospholipase C-delta isoforms. J Biol Chem. 2002;277:3568–3575. doi: 10.1074/jbc.M109705200. [DOI] [PubMed] [Google Scholar]
  • [31].Lawson N.D., Mugford J.W., Diamond B.A., Weinstein B.M. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 2003;17:1346–1351. doi: 10.1101/gad.1072203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Mi L.Y., Ettenson D.S., Edelman E.R. Phospholipase C-delta extends intercellular signalling range and responses to injury-released growth factors in non-excitable cells. Cell Prolif. 2008;41:671–690. doi: 10.1111/j.1365-2184.2008.00544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Maffucci T., Falasca M. Phosphoinositide 3-kinase-dependent regulation of phospholipase Cgamma. Biochem Soc Trans. 2007;35:229–230. doi: 10.1042/BST0350211. [DOI] [PubMed] [Google Scholar]
  • [34].Crooke C.E., Pozzi A., Carpenter G.F. PLC-gamma1 regulates fibronectin assembly and cell aggregation. Exp Cell Res. 2009;315:2207–2214. doi: 10.1016/j.yexcr.2009.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Diakonova M., Chilov D., Arnaoutov A., Alexeyev V., Nikolsky N., Medvedeva N. Intracellular distribution of phospholipase C gamma 1 in cell lines with different levels of transformation. Eur J Cell Biol. 1997;73:360–367. [PubMed] [Google Scholar]
  • [36].McBride K., Rhee S.G., Jaken S. Immunocytochemical localization of phospholipase C-gamma in rat embryo fibroblasts. Proc Natl Acad Sci U S A. 1991;88:7111–7115. doi: 10.1073/pnas.88.16.7111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Hwang J.I., Oh Y.S., Shin K.J., Kim H., Ryu S.H., Suh P.G. Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J. 2005;389:181–186. doi: 10.1042/BJ20041677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Wing M.R., Bourdon D.M., Harden T.K. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3:273–280. doi: 10.1124/mi.3.5.273. [DOI] [PubMed] [Google Scholar]
  • [39].Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–3544. doi: 10.1242/dev.129.15.3533. [DOI] [PubMed] [Google Scholar]
  • [40].Zhou Y., Wing M.R., Sondek J., Harden T.K. Molecular cloning and characterization of PLC-eta2. Biochem J. 2005;391:667–676. doi: 10.1042/BJ20050839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Lo Vasco V.R., Fabrizi C., Fumagalli L., Cocco L. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with lipopolysaccharide. J Cell Biochem. 2010;109:1006–1012. doi: 10.1002/jcb.22480. [DOI] [PubMed] [Google Scholar]
  • [42].Lo Vasco V.R., Fabrizi C., Artico M., Cocco L., Billi A.M., Fumagalli L., et al. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem. 2007;100:952–959. doi: 10.1002/jcb.21048. [DOI] [PubMed] [Google Scholar]
  • [43].Ross C.A., MacCumber M.W., Glatt C.E., Snyder S.H. Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc Natl Acad Sci U S A. 1989;86:2923–2927. doi: 10.1073/pnas.86.8.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Vitale M., Rezzani R., Gobbi G., Ponti C., Matteucci A., Cacchioli A., et al. Phospholipase-C beta1 is predominantely expressed in the granular layer of rat cerebellar cortex. Int J Mol Med. 2004;14:161–164. [PubMed] [Google Scholar]
  • [45].Hannan A.J., Blakemore C., Katsnelson A., Vitalis T., Huber K.M., Bear M., et al. PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci. 2001;4:282–288. doi: 10.1038/85132. [DOI] [PubMed] [Google Scholar]
  • [46].Spires T.L., Molnar Z., Kind P.C., Cordery P.M., Upton A.L., Blakemore C., et al. Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling. Cereb Cortex. 2005;15:385–393. doi: 10.1093/cercor/bhh141. [DOI] [PubMed] [Google Scholar]
  • [47].Kim D., Jun K.S., Lee S.B., Kang N.G., Min D.S., Kim Y.H., et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature. 1997;389:290–293. doi: 10.1038/38508. [DOI] [PubMed] [Google Scholar]
  • [48].Wallace M.A., Claro E. A novel role for dopamine: inhibition of muscarinic cholinergic-stimulated phosphoinositide hydrolysis in rat brain cortical membranes. Neurosci Lett. 1990;110:155–161. doi: 10.1016/0304-3940(90)90804-I. [DOI] [PubMed] [Google Scholar]
  • [49].Kurian M.A., Meyer E., Vassallo G., Morgan N.V., Prakash N., Pasha S., et al. Phospholipase C beta 1 deficiency is associated with earlyonset epileptic encephalopathy. Brain. 2010;133:2964–2970. doi: 10.1093/brain/awq238. [DOI] [PubMed] [Google Scholar]
  • [50].Lo Vasco V.R., Cardinale G., Polonia P. Deletion of PLCB1 gene in schizophrenia-affected patients. J Cell Mol Med. 2012;16:844–851. doi: 10.1111/j.1582-4934.2011.01363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Miyoshi M.A., Abe K., Emori Y. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses. 2001;26:259–265. doi: 10.1093/chemse/26.3.259. [DOI] [PubMed] [Google Scholar]
  • [52].Ferreira P.A., Pak W.L. Bovine phospholipase C highly homologous to the norpA protein of Drosophila is expressed specifically in cones. J Biol Chem. 1994;269:3129–3131. [PubMed] [Google Scholar]
  • [53].Tanaka O., Kondo H. Localization of mRNAs for three novel members (beta 3, beta 4 and gamma 2) of phospholipase C family in mature rat brain. Neurosci Lett. 1994;182:17–20. doi: 10.1016/0304-3940(94)90194-5. [DOI] [PubMed] [Google Scholar]
  • [54].Watanabe M., Nakamura M., Sato K., Kano M., Simon M.I., Inoue Y. Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cbeta in mouse brain. Eur J Neurosci. 1998;10:2016–2025. doi: 10.1046/j.1460-9568.1998.00213.x. [DOI] [PubMed] [Google Scholar]
  • [55].Kano M., Hashimoto K., Watanabe M., Kurihara H., Offermanns S., Jiang H., et al. Phospholipase cbeta4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci U S A. 1998;95:15724–15729. doi: 10.1073/pnas.95.26.15724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Chung S.H., Marzban H., Watanabe M., Hawkes R. Phospholipase Cbeta4 expression identifies a novel subset of unipolar brush cells in the adult mouse cerebellum. Cerebellum. 2009;8:267–276. doi: 10.1007/s12311-009-0092-x. [DOI] [PubMed] [Google Scholar]
  • [57].Bertelli E., Regoli M., Gambelli F., Lucattelli M., Lungarella G., Bastianini A. GFAP is expressed as a major soluble pool associated with glucagon secretory granules in A-cells of mouse pancreas. J Histochem Cytochem. 2000;48:1233–1242. doi: 10.1177/002215540004800907. [DOI] [PubMed] [Google Scholar]
  • [58].Medina D.L., Sciarretta C., Calella A.M., Von Bohlen Und Halbach O., Unsicker K., Minichiello L. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 2004;23:3803–3814. doi: 10.1038/sj.emboj.7600399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Minichiello L., Calella A.M., Medina D.L., Bonhoeffer T., Klein R., Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36:121–137. doi: 10.1016/S0896-6273(02)00942-X. [DOI] [PubMed] [Google Scholar]
  • [60].Margolis B., Rhee S.G., Felder S., Mervic M., Lyall R., Levitzki A., et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell. 1989;57:1101–1107. doi: 10.1016/0092-8674(89)90047-0. [DOI] [PubMed] [Google Scholar]
  • [61].Schmidt M., Evellin S., Weernink P.A., von Dorp F., Rehmann H., Lomasney J.W., et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020–1024. doi: 10.1038/ncb1101-1020. [DOI] [PubMed] [Google Scholar]
  • [62].Vaccarino F.M., Schwartz M.L., Raballo R., Nilsen J., Rhee J., Zhou M., et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci. 1999;2:246–253. doi: 10.1038/6350. [DOI] [PubMed] [Google Scholar]
  • [63].Itoh K., Ishima T., Kehler J., Hashimoto K. Potentiation of NGF-induced neurite outgrowth in PC12 cells by papaverine: role played by PLC-gamma, IP3 receptors. Brain Res. 2011;1377:32–40. doi: 10.1016/j.brainres.2010.12.075. [DOI] [PubMed] [Google Scholar]
  • [64].Zhu J.J., Qin Y., Zhao M., Van Aelst L., Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002;110:443–455. doi: 10.1016/S0092-8674(02)00897-8. [DOI] [PubMed] [Google Scholar]
  • [65].Lo Vasco V.R. Role of phosphoinositide-specific phospholipase C eta2 in isolated and syndromic mental retardation. Eur Neurol. 2011;65:264–269. doi: 10.1159/000327307. [DOI] [PubMed] [Google Scholar]
  • [66].Carey M.B., Matsumoto S.G. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol. 1999;215:298–313. doi: 10.1006/dbio.1999.9433. [DOI] [PubMed] [Google Scholar]
  • [67].Bai Y., Meng Z., Cui M., Zhang X., Chen F., Xiao J., et al. An Ang1-Tie2-PI3K axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience. 2009;160:371–381. doi: 10.1016/j.neuroscience.2009.01.076. [DOI] [PubMed] [Google Scholar]
  • [68].Nakamura Y., Fukami K. Roles of phospholipase C isozymes in organogenesis and embryonic development. Physiology (Bethesda) 2009;24:332–341. doi: 10.1152/physiol.00031.2009. [DOI] [PubMed] [Google Scholar]
  • [69].Poncet C., Frances V., Gristina R., Scheiner C., Pellissier J.F., Figarella-Branger D. CD24, a glycosylphosphatidylinositol-anchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol. 1996;91:400–408. doi: 10.1007/s004010050442. [DOI] [PubMed] [Google Scholar]
  • [70].Jung H., Kim H.J., Lee S.K., Kim R., Kopachik W., Han J.K., et al. Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med. 2009;41:695–706. doi: 10.3858/emm.2009.41.10.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Wu Y., Peng H., Cui M., Whitney N.P., Huang Y., Zheng J.C. CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem. 2009;109:1157–1167. doi: 10.1111/j.1471-4159.2009.06043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [72].Belcheva M.M., Clark A.L., Haas P.D., Serna J.S., Hahn J.W., Kiss A., et al. Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem. 2005;280:27662–27669. doi: 10.1074/jbc.M502593200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [73].Bilecki W., Zapart G., Ligeza A., Wawrzczak-Bargiela A., Urbanski M.J., Przewlocki R. Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment. Cell Mol Life Sci. 2005;62:2369–2375. doi: 10.1007/s00018-005-5277-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [74].Fazeli S., Wells D.J., Hobbs C., Walsh F.S. Altered secondary myogenesis in transgenic animals expressing the neural cell adhesion molecule under the control of a skeletal muscle alpha-actin promoter. J Cell Biol. 1996;135:241–251. doi: 10.1083/jcb.135.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75].Jessen U., Novitskaya V., Pedersen N., Serup P., Berezin V., Bock E. The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells. J Neurochem. 2001;79:1149–1160. doi: 10.1046/j.1471-4159.2001.00636.x. [DOI] [PubMed] [Google Scholar]
  • [76].Krog L., Bock E. Glycosylation of neural cell adhesion molecules of the immunoglobulin superfamily. APMIS Suppl. 1992;27:53–70. [PubMed] [Google Scholar]
  • [77].Yamamoto N., Higashi S., Toyama K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J Neurosci. 1997;17:3653–3663. doi: 10.1523/JNEUROSCI.17-10-03653.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [78].Yamamoto N., Inui K., Matsuyama Y., Harada A., Hanamura K., Murakami F., et al. Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons. J Neurosci. 2000;20:9145–9151. doi: 10.1523/JNEUROSCI.20-24-09145.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Tang J., Landmesser L., Rutishauser U. Polysialic acid influences specific pathfinding by avian motoneurons. Neuron. 1992;8:1031–1044. doi: 10.1016/0896-6273(92)90125-W. [DOI] [PubMed] [Google Scholar]
  • [80].Edvardsen K., Chen W., Rucklidge G., Walsh F.S., Obrink B., Bock E. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases. Proc Natl Acad Sci U S A. 1993;90:11463–11467. doi: 10.1073/pnas.90.24.11463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [81].Barton C.H., Dickson G., Gower H.J., Rowett L.H., Putt W., Elsom V., et al. Complete sequence and in vitro expression of a tissue-specific phosphatidylinositol-linked N-CAM isoform from skeletal muscle. Development. 1988;104:165–173. doi: 10.1242/dev.104.1.165. [DOI] [PubMed] [Google Scholar]
  • [82].Asou H., Ono K., Uemura I., Sugawa M., Uyemura K. Axonal growth-related cell surface molecule, neurin-1, involved in neuronglia interaction. J Neurosci Res. 1996;45:571–587. doi: 10.1002/(SICI)1097-4547(19960901)45:5<571::AID-JNR7>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  • [83].Struyk A.F., Canoll P.D., Wolfgang M.J., Rosen C.L., D’Eustachio P., Salzer J.L. Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J Neurosci. 1995;15:2141–2156. doi: 10.1523/JNEUROSCI.15-03-02141.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [84].Gil O.D., Zanazzi G., Struyk A.F., Salzer J.L. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci. 1998;18:9312–9325. doi: 10.1523/JNEUROSCI.18-22-09312.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [85].Nicot A., DiCicco-Bloom E. Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci U S A. 2001;98:4758–4763. doi: 10.1073/pnas.071465398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [86].Dejda A., Jozwiak-Bebenista M., Nowak J.Z. PACAP, VIP, and PHI: effects on AC-, PLC-, and PLD-driven signaling systems in the primary glial cell cultures. Ann N Y Acad Sci. 2006;1070:220–225. doi: 10.1196/annals.1317.018. [DOI] [PubMed] [Google Scholar]
  • [87].Melliti K., Meza U., Fisher R., Adams B. Regulators of G protein signaling attenuate the G protein-mediated inhibition of N-type Ca channels. J Gen Physiol. 1999;113:97–110. doi: 10.1085/jgp.113.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [88].Wang K.H., Brose K., Arnott D., Kidd T., Goodman C.S., Henzel W., et al. Biochemical purification of a mammalian slit protein as a posi tive regulator of sensory axon elongation and branching. Cell. 1999;96:771–784. doi: 10.1016/S0092-8674(00)80588-7. [DOI] [PubMed] [Google Scholar]
  • [89].Salles J., Wallace M.A., Fain J.N. Modulation of the phospholipase C activity in rat brain cortical membranes by simultaneous activation of distinct monoaminergic and cholinergic muscarinic receptors. Brain Res Mol Brain Res. 1993;20:111–117. doi: 10.1016/0169-328X(93)90115-6. [DOI] [PubMed] [Google Scholar]
  • [90].Zhang H., Craciun L.C., Mirshahi T., Rohacs T., Lopes C.M., Jin T., et al. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron. 2003;37:963–975. doi: 10.1016/S0896-6273(03)00125-9. [DOI] [PubMed] [Google Scholar]
  • [91].Ikeda S.R., Kammermeier P.J. M current mystery messenger revealed? Neuron. 2002;35:411–412. doi: 10.1016/S0896-6273(02)00792-4. [DOI] [PubMed] [Google Scholar]
  • [92].Sekar M.C., Hokin L.E. Phosphoinositide metabolism and cGMP levels are not coupled to the muscarinic-cholinergic receptor in human erythrocyte. Life Sci. 1986;39:1257–1262. doi: 10.1016/0024-3205(86)90186-4. [DOI] [PubMed] [Google Scholar]
  • [93].Chuang S.C., Bianchi R., Wong R.K. Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells. J Neurophysiol. 2000;83:2844–2853. doi: 10.1152/jn.2000.83.5.2844. [DOI] [PubMed] [Google Scholar]
  • [94].Floyd C.L., Rzigalinski B.A., Sitterding H.A., Willoughby K.A., Ellis E.F. Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma. 2004;21:205–216. doi: 10.1089/089771504322778668. [DOI] [PubMed] [Google Scholar]
  • [95].Rao T.S., Lariosa-Willingham K.D., Lin F.F., Yu N., Tham C.S., Chun J., et al. Growth factor pre-treatment differentially regulates phosphoinositide turnover downstream of lysophospholipid receptor and metabotropic glutamate receptors in cultured rat cerebrocortical astrocytes. Int J Dev Neurosci. 2004;22:131–135. doi: 10.1016/j.ijdevneu.2004.03.005. [DOI] [PubMed] [Google Scholar]
  • [96].Baskys A., Bayazitov I., Fang L., Blaabjerg M., Poulsen F.R., Zimmer J. Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis. Neuropharmacology. 2005;49:146–156. doi: 10.1016/j.neuropharm.2005.04.029. [DOI] [PubMed] [Google Scholar]
  • [97].Li Y.C., Liu G., Hu J.L., Gao W.J., Huang Y.Q. Dopamine D(1) receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons. J Neurochem. 2010;114:62–73. doi: 10.1111/j.1471-4159.2010.06818.x. [DOI] [PubMed] [Google Scholar]
  • [98].Smallridge R.C., Kiang J.G., Gist I.D., Fein H.G., Galloway R.J. U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells. Endocrinology. 1992;131:1883–1888. doi: 10.1210/en.131.4.1883. [DOI] [PubMed] [Google Scholar]
  • [99].Farias N.R., Fiore A.M., Pedersen J.Z., Incerpi S. Nongenomic actions of thyroid hormones: focus on membrane transport systems. Immunol Endocr Metab Agents Med Chem. 2006;6:241–254. doi: 10.2174/187152206777435609. [DOI] [Google Scholar]
  • [100].Venkatachalam K., Zheng F., Gill D.L. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem. 2003;278:29031–29040. doi: 10.1074/jbc.M302751200. [DOI] [PubMed] [Google Scholar]
  • [101].Zisch A.H., D’Alessandri L., Ranscht B., Falchetto R., Winterhalter K.H., Vaughan L. Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains. J Cell Biol. 1992;119:203–213. doi: 10.1083/jcb.119.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [102].Jones N.P., Peak J., Brader S., Eccles S.A., Katan M. PLCgamma1 is essential for early events in integrin signalling required for cell motility. J Cell Sci. 2005;118:2695–2706. doi: 10.1242/jcs.02374. [DOI] [PubMed] [Google Scholar]
  • [103].Rigato F., Garwood J., Calco V., Heck N., Faivre-Sarrailh C., Faissner A. Tenascin-C promotes neurite outgrowth of embryonic hippocampal neurons through the alternatively spliced fibronectin type III BD domains via activation of the cell adhesion molecule F3/contactin. J Neurosci. 2002;22:6596–6609. doi: 10.1523/JNEUROSCI.22-15-06596.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [104].Hasbi A., Fan T., Alijaniaram M., Nguyen T., Perreault M.L., O’Dowd B.F., et al. Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci U S A. 2009;106:21377–21382. doi: 10.1073/pnas.0903676106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [105].Jope R.S., Song L., Powers R. [3H]PtdIns hydrolysis in postmortem human brain membranes is mediated by the G-proteins Gq/11 and phospholipase C-beta. Biochem J. 1994;304(Pt2):655–659. doi: 10.1042/bj3040655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [106].Jose P.A., Yu P.Y., Yamaguchi I., Eisner G.M., Mouradian M.M., Felder C.C., et al. Dopamine D1 receptor regulation of phospholipase C. Hypertens Res. 1995;18(Suppl1):S39–42. doi: 10.1291/hypres.18.SupplementI_S39. [DOI] [PubMed] [Google Scholar]
  • [107].Udawela M., Scarr E., Hannan A.J., Thomas E.A., Dean B. Phospholipase C beta 1 expression in the dorsolateral prefrontal cortex from patients with schizophrenia at different stages of illness. Aust N Z J Psychiatry. 2011;45:140–147. doi: 10.3109/00048674.2010.533364. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES