Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Nov 17;28(6):715–722. doi: 10.1007/s12264-012-1284-9

Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels

Ye-Nan Chi 1, Xu Zhang 1, Jie Cai 1, Feng-Yu Liu 1, Guo-Gang Xing 2, You Wan 1,2,
PMCID: PMC5561821  PMID: 23160928

Abstract

Objective

Formaldehyde at high concentrations is a contributor to air pollution. It is also an endogenous metabolic product in cells, and when beyond physiological concentrations, has pathological effects on neurons. Formaldehyde induces mis-folding and aggregation of neuronal tau protein, hippocampal neuronal apoptosis, cognitive impairment and loss of memory functions, as well as excitation of peripheral nociceptive neurons in cancer pain models. Intracellular calcium ([Ca2+]i) is an important intracellular messenger, and plays a key role in many pathological processes. The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.

Methods

Using primary cultured hippocampal neurons as a model, changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.

Results

Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i. (2R)-amino-5-phosphonopentanoate (AP5, 25 μmol/L, an NMDAR antagonist) and mibefradil (MIB, 1 μmol/L, a T-type Ca2+ channel blocker), given 5 min after formaldehyde perfusion, each partly inhibited the formaldehyde-induced increase of [Ca2+]i, and this inhibitory effect was reinforced by combined application of AP5 and MIB. When applied 3 min before formaldehyde perfusion, AP5 (even at 50 μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i, but MIB (1 μmol/L) significantly inhibited this increase by 70%.

Conclusion

These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.

Keywords: formaldehyde, intracellular calcium, neuronal activation, NMDA receptors, T-type calcium channels

References

  • [1].Erkrath K.D., Adebahr G., Kloppel A. Lethal intoxication by formalin during dialysis (author’s transl) Z Rechtsmed. 1981;87:233–236. doi: 10.1007/BF00204769. [DOI] [PubMed] [Google Scholar]
  • [2].Lee E.S., Chen H., Hardman C., Simm A., Charlton C. Excessive Sadenosyl-L-methionine-dependent methylation increases levels of methanol, formaldehyde and formic acid in rat brain striatal homogenates: possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders. Life Sci. 2008;83:821–827. doi: 10.1016/j.lfs.2008.09.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Thompson C.M., Grafstrom R.C. Commentary: mechanistic considerations for associations between formaldehyde exposure and nasopharyngeal carcinoma. Environ Health. 2009;8:53. doi: 10.1186/1476-069X-8-53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Tyihák E., Trézl L., Szende B. Formaldehyde cycle and the phases of stress syndrome. Ann NY Acad Sci. 1998;851:259–270. doi: 10.1111/j.1749-6632.1998.tb09001.x. [DOI] [Google Scholar]
  • [5].Heck H., Casanova M. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Regul Toxicol Pharmacol. 2004;40:92–106. doi: 10.1016/j.yrtph.2004.05.001. [DOI] [PubMed] [Google Scholar]
  • [6].Han Y., Li Y., Xiao X., Liu J., Meng X., Liu F., et al. Formaldehyde upregulates TRPV1 through MAPK and PI3K signaling pathways in bone cancer pain model of rats. Neurosci Bull. 2012;28:165–172. doi: 10.1007/s12264-012-1211-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Tong Z., Luo W., Wang Y., Yang F., Han Y., Li H., et al. Tumor tissuederived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS One. 2010;5:e10234. doi: 10.1371/journal.pone.0010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Chen K., Maley J., Yu P.H. Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem. 2006;99:1413–1424. doi: 10.1111/j.1471-4159.2006.04181.x. [DOI] [PubMed] [Google Scholar]
  • [9].Nie C.L., Wei Y., Chen X., Liu Y.Y., Dui W., Liu Y., et al. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One. 2007;2:e629. doi: 10.1371/journal.pone.0000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Tong Z., Zhang J., Luo W., Wang W., Li F., Li H., et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging. 2011;32:31–41. doi: 10.1016/j.neurobiolaging.2009.07.013. [DOI] [PubMed] [Google Scholar]
  • [11].Yagami T., Kohma H., Yamamoto Y. L-type voltage-dependent calcium channels as therapeutic targets for neurodegenerative diseases. Curr Med Chem. 2012;19(28):4816–4827. doi: 10.2174/092986712803341430. [DOI] [PubMed] [Google Scholar]
  • [12].Takahashi K., Ueno S., Akaike N. Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 pyramidal neurons. J Neurophysiol. 1991;65:148–155. doi: 10.1152/jn.1991.65.1.148. [DOI] [PubMed] [Google Scholar]
  • [13].Higashima M., Kinoshita H., Koshino Y. Contribution of T-type calcium channels to afterdischarge generation in rat hippocampal slices. Brain Res. 1998;781:127–134. doi: 10.1016/S0006-8993(97)01222-5. [DOI] [PubMed] [Google Scholar]
  • [14].White G., Lovinger D.M., Weight F.F. Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci U S A. 1989;86:6802–6806. doi: 10.1073/pnas.86.17.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Macias W., Carlson R., Rajadhyaksha A., Barczak A., Konradi C. Potassium chloride depolarization mediates CREB phosphorylation in striatal neurons in an NMDA receptor-dependent manner. Brain Res. 2001;890:222–232. doi: 10.1016/S0006-8993(00)03163-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Clarke R.J., Johnson J.W. Voltage-dependent gating of NR1/2B NMDA receptors. J Physiol. 2008;586:5727–5741. doi: 10.1113/jphysiol.2008.160622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  • [18].Perez-Reyes E. Molecular physiology of low-voltage-activated ttype calcium channels. Physiol Rev. 2003;83:117–161. doi: 10.1152/physrev.00018.2002. [DOI] [PubMed] [Google Scholar]
  • [19].Huszti Z., Tyihak E. Formation of formaldehyde from S-adenosyl-L-[methyl-3H]methionine during enzymic transmethylation of histamine. FEBS Lett. 1986;209:362–366. doi: 10.1016/0014-5793(86)81143-7. [DOI] [PubMed] [Google Scholar]
  • [20].Kalasz H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem. 2003;3:175–192. doi: 10.2174/1389557033488187. [DOI] [PubMed] [Google Scholar]
  • [21].Shcherbakova L.N., Tel’Pukhov V.I., Trenin S.O., Bashilov I.A., Lapkina T.I. Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med. 1986;102:573–575. [PubMed] [Google Scholar]
  • [22].Yi M., Zhang H., Lao L., Xing G.G., Wan Y. Anterior cingulate cortex is crucial for contra-but not ipsi-lateral electro-acupuncture in the formalin-induced inflammatory pain model of rats. Mol Pain. 2011;7:61. doi: 10.1186/1744-8069-7-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Park S.Y., Ferreira A. The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci. 2005;25:5365–5375. doi: 10.1523/JNEUROSCI.1125-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Collingridge G. Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature. 1987;330:604–605. doi: 10.1038/330604a0. [DOI] [PubMed] [Google Scholar]
  • [25].Hardingham G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans. 2009;37:1147–1160. doi: 10.1042/BST0371147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Johnson K.A., Conn P.J., Niswender C.M. Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets. 2009;8:475–491. doi: 10.2174/187152709789824606. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES