Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2013 Feb 6;29(3):381–389. doi: 10.1007/s12264-013-1309-z

Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques

Michela Balconi 1,
PMCID: PMC5561838  PMID: 23385388

Abstract

The ability to recall and recognize facts we experienced in the past is based on a complex mechanism in which several cerebral regions are implicated. Neuroimaging and lesion studies agree in identifying the frontal lobe as a crucial structure for memory processes, and in particular for working memory and episodic memory and their relationships. Furthermore, with the introduction of transcranial magnetic stimulation (TMS) a new way was proposed to investigate the relationships between brain correlates, memory functions and behavior. The aim of this review is to present the main findings that have emerged from experiments which used the TMS technique for memory analysis. They mainly focused on the role of the dorsolateral prefrontal cortex in memory process. Furthermore, we present state-of-the-art evidence supporting a possible use of TMS in the clinic. Specifically we focus on the treatment of memory deficits in depression and anxiety disorders.

Keywords: transcranial magnetic stimulation, dorsolateral prefrontal cortex, memory, working memory, anxiety, depression

References

  • [1].Moscovitch A. Neuropsychology of Memory. 2nd ed. New York: Guilford Press; 1992. pp. 5–22. [Google Scholar]
  • [2].Brenda Milner MP. Behavioural effects of frontal-lobe lesions in man. Trends Neurosci. 1984;7:403–407. doi: 10.1016/S0166-2236(84)80143-5. [DOI] [Google Scholar]
  • [3].Petrides M. Frontal Lobes and Memory. 2nd ed. New York: Elsevier Science Publishers; 1989. pp. 75–90. [Google Scholar]
  • [4].Fletcher PC, Shallice T, Frith CD, Frackowiak RS, Dolan RJ. The functional roles of prefrontal cortex in episodic memory. ii. Retrieval. Brain. 1998;121(Pt7):1249–1256. doi: 10.1093/brain/121.7.1249. [DOI] [PubMed] [Google Scholar]
  • [5].Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7:415–423. doi: 10.1016/S1364-6613(03)00197-9. [DOI] [PubMed] [Google Scholar]
  • [6].Tulving E. Précis of Elements of episodic memory. Behav Brain Sci. 1984;7:223–268. doi: 10.1017/S0140525X0004440X. [DOI] [Google Scholar]
  • [7].Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4:417–423. doi: 10.1016/S1364-6613(00)01538-2. [DOI] [PubMed] [Google Scholar]
  • [8].Papagno C. Neuropsicologia della Memoria [Neuropsychology of Memory] Bologna: Il Mulino; 2010. [Google Scholar]
  • [9].Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26:916–925. doi: 10.1523/JNEUROSCI.2353-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Sandrini M, Cappa SF, Rossi S, Rossini PM, Miniussi C. The role of prefrontal cortex in verbal episodic memory: rTMS evidence. J Cogn Neurosci. 2003;15:855–861. doi: 10.1162/089892903322370771. [DOI] [PubMed] [Google Scholar]
  • [11].Schmidt D, Krause BJ, Mottaghy FM, Halsband U, Herzog H, Tellmann L, et al. Brain systems engaged in encoding and retrieval of word-pair associates independent of their imagery content or presentation modalities. Neuropsychologia. 2002;40:457–470. doi: 10.1016/S0028-3932(01)00102-6. [DOI] [PubMed] [Google Scholar]
  • [12].Johnson MK, Multhaup KS. The Handbook of Emotion and Memory: Current Research and Theory. Hillsdale: Erlbaum Associates; 1992. pp. 33–66. [Google Scholar]
  • [13].Nolde SF, Johnson MK, Raye CL. The role of prefrontal cortex during tests of episodic memory. Trends Cogn Sci. 1998;2:399–406. doi: 10.1016/S1364-6613(98)01233-9. [DOI] [PubMed] [Google Scholar]
  • [14].Miniussi C, Ruzzoli M, Walsh V. The mechanism of transcranial magnetic stimulation in cognition. Cortex. 2010;46:128–130. doi: 10.1016/j.cortex.2009.03.004. [DOI] [PubMed] [Google Scholar]
  • [15].Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–1403. doi: 10.1212/WNL.48.5.1398. [DOI] [PubMed] [Google Scholar]
  • [16].George MS, Padberg F, Schlaepfer TE, O’Reardon JP, Fitzgerald PB, Nahas ZH, et al. Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder) Brain Stimul. 2009;2:14–21. doi: 10.1016/j.brs.2008.06.001. [DOI] [PubMed] [Google Scholar]
  • [17].Thut G, Pascual-Leone A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr. 2010;22:219–232. doi: 10.1007/s10548-009-0115-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Pascual-Leone A, Hallett M. Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport. 1994;5:2517–2520. doi: 10.1097/00001756-199412000-00028. [DOI] [PubMed] [Google Scholar]
  • [19].Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC. The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain. 1998;121(Pt8):1533–1544. doi: 10.1093/brain/121.8.1533. [DOI] [PubMed] [Google Scholar]
  • [20].Mottaghy FM, Krause BJ, Kemna LJ, Topper R, Tellmann L, Beu M, et al. Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci Lett. 2000;280:167–170. doi: 10.1016/S0304-3940(00)00798-9. [DOI] [PubMed] [Google Scholar]
  • [21].Mottaghy FM, Gangitano M, Krause BJ, Pascual-Leone A. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation. Neuroimage. 2003;18:565–575. doi: 10.1016/S1053-8119(03)00010-7. [DOI] [PubMed] [Google Scholar]
  • [22].Postle BR, Ferrarelli F, Hamidi M, Feredoes E, Massimini M, Peterson M, et al. Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. J Cogn Neurosci. 2006;18:1712–1722. doi: 10.1162/jocn.2006.18.10.1712. [DOI] [PubMed] [Google Scholar]
  • [23].Osaka N, Otsuka Y, Hirose N, Ikeda T, Mima T, Fukuyama H, et al. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neurosci Lett. 2007;418:232–235. doi: 10.1016/j.neulet.2007.01.087. [DOI] [PubMed] [Google Scholar]
  • [24].Preston G, Anderson E, Silva C, Goldberg T, Wassermann EM. Effects of 10 Hz rTMS on the neural efficiency of working memory. J Cogn Neurosci. 2010;22:447–456. doi: 10.1162/jocn.2009.21209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Mull BR, Seyal M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin Neurophysiol. 2001;112:1672–1675. doi: 10.1016/S1388-2457(01)00606-X. [DOI] [PubMed] [Google Scholar]
  • [26].Hadland KA, Rushworth MF, Passingham RE, Jahanshahi M, Rothwell JC. Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J Cogn Neurosci. 2001;13:1097–1108. doi: 10.1162/089892901753294392. [DOI] [PubMed] [Google Scholar]
  • [27].Chao LL, Knight RT. Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci. 1998;10:167–177. doi: 10.1162/089892998562636. [DOI] [PubMed] [Google Scholar]
  • [28].Hannula H, Neuvonen T, Savolainen P, Hiltunen J, Ma YY, Antila H, et al. Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. Neuroimage. 2010;49:1091–1098. doi: 10.1016/j.neuroimage.2009.07.049. [DOI] [PubMed] [Google Scholar]
  • [29].Gagnon G, Blanchet S, Grondin S, Schneider C. Pairedpulse transcranial magnetic stimulation over the dorsolateral prefrontal cortex interferes with episodic encoding and retrieval for both verbal and non-verbal materials. Brain Res. 2010;1344:148–158. doi: 10.1016/j.brainres.2010.04.041. [DOI] [PubMed] [Google Scholar]
  • [30].Gagnon G, Schneider C, Grondin S, Blanchet S. Enhancement of episodic memory in young and healthy adults: a paired-pulse TMS study on encoding and retrieval performance. Neurosci Lett. 2011;488:138–142. doi: 10.1016/j.neulet.2010.11.016. [DOI] [PubMed] [Google Scholar]
  • [31].Rossi S, Cappa SF, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, et al. Prefrontal [correction of Prefontal]_cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat Neurosci. 2001;4:948–952. doi: 10.1038/nn0901-948. [DOI] [PubMed] [Google Scholar]
  • [32].Innocenti I, Giovannelli F, Cincotta M, Feurra M, Polizzotto NR, Bianco G, et al. Event-related rTMS at encoding affects differently deep and shallow memory traces. Neuroimage. 2010;53:325–330. doi: 10.1016/j.neuroimage.2010.06.011. [DOI] [PubMed] [Google Scholar]
  • [33].Manenti R, Tettamanti M, Cotelli M, Miniussi C, Cappa SF. The neural bases of word encoding and retrieval: A fMRI-guided transcranial magnetic stimulation study. Brain Topogr. 2010;22:318–332. doi: 10.1007/s10548-009-0126-1. [DOI] [PubMed] [Google Scholar]
  • [34].Paivio A. Dual coding theory: Retrospect and current status. Can J Psychol. 1991;45:255–287. doi: 10.1037/h0084295. [DOI] [Google Scholar]
  • [35].Kishiyama MM, Yonelinas AP, Knight RT. Novelty enhancements in memory are dependent on lateral prefrontal cortex. J Neurosci. 2009;29:8114–8118. doi: 10.1523/JNEUROSCI.5507-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Skrdlantova L, Horacek J, Dockery C, Lukavsky J, Kopecek M, Preiss M, et al. The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces. Physiol Res. 2005;54:123–128. doi: 10.33549/physiolres.930667. [DOI] [PubMed] [Google Scholar]
  • [37].Floel A, Poeppel D, Buffalo EA, Braun A, Wu CW, Seo HJ, et al. Prefrontal cortex asymmetry for memory encoding of words and abstract shapes. Cereb Cortex. 2004;14:404–409. doi: 10.1093/cercor/bhh002. [DOI] [PubMed] [Google Scholar]
  • [38].Epstein CM, Sekino M, Yamaguchi K, Kamiya S, Ueno S. Asymmetries of prefrontal cortex in human episodic memory: effects of transcranial magnetic stimulation on learning abstract patterns. Neurosci Lett. 2002;320:5–8. doi: 10.1016/S0304-3940(01)02573-3. [DOI] [PubMed] [Google Scholar]
  • [39].Balconi M, Ferrari C. Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories. Brain imaging Behav. 2012;6:454–461. doi: 10.1007/s11682-012-9163-6. [DOI] [PubMed] [Google Scholar]
  • [40].Balconi M, Ferrari C. rTMS stimulation on left DLPFC increases the correct recognition of memories for emotional target and distractor words. Cogn Affect Behav Neurosci. 2012;12:589–598. doi: 10.3758/s13415-012-0090-1. [DOI] [PubMed] [Google Scholar]
  • [41].Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci. 2004;7:184–188. doi: 10.1038/nn1173. [DOI] [PubMed] [Google Scholar]
  • [42].Tucker DM, Antes JR, Stenslie CE, Barnhardt TM. Anxiety and lateral cerebral function. J Abnorm Psychol. 1978;87:380–383. doi: 10.1037/0021-843X.87.8.380. [DOI] [PubMed] [Google Scholar]
  • [43].Carter WR, Johnson MC, Borkovec TD. Worry: An electrocortical analysis. Adv Behav Res Ther. 1986;4:193–204. doi: 10.1016/0146-6402(86)90004-4. [DOI] [Google Scholar]
  • [44].Baxter LR, Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46:243–250. doi: 10.1001/archpsyc.1989.01810030049007. [DOI] [PubMed] [Google Scholar]
  • [45].Heller W, Etienne MA, Miller GA. Patterns of perceptual asymmetry in depression and anxiety: implications for neuropsychological models of emotion and psychopathology. J Abnorm Psychol. 1995;104:327–333. doi: 10.1037/0021-843X.104.2.327. [DOI] [PubMed] [Google Scholar]
  • [46].Buchsbaum MS, Wu J, Haier R, Hazlett E, Ball R, Katz M, et al. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder. Life Sci. 1987;40:2393–2400. doi: 10.1016/0024-3205(87)90753-3. [DOI] [PubMed] [Google Scholar]
  • [47].Balconi M, Brambilla E, Falbo L. Appetitive vs. defensive responses to emotional cues. Autonomic measures and brain oscillation modulation. Brain Res. 2009;1296:72–84. doi: 10.1016/j.brainres.2009.08.056. [DOI] [PubMed] [Google Scholar]
  • [48].Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3:11–21. doi: 10.1016/S1364-6613(98)01265-0. [DOI] [PubMed] [Google Scholar]
  • [49].Zwanzger P, Fallgatter AJ, Zavorotnyy M, Padberg F. Anxiolytic effects of transcranial magnetic stimulation—an alternative treatment option in anxiety disorders? J Neural Transm. 2009;116:767–775. doi: 10.1007/s00702-008-0162-0. [DOI] [PubMed] [Google Scholar]
  • [50].van Honk J, Tuiten A, Verbaten R, van den Hout M, Koppeschaar H, Thijssen J, et al. Correlations among salivary testosterone, mood, and selective attention to threat in humans. Horm Behav. 1999;36:17–24. doi: 10.1006/hbeh.1999.1521. [DOI] [PubMed] [Google Scholar]
  • [51].Bench CJ, Frackowiak RS, Dolan RJ. Changes in regional cerebral blood flow on recovery from depression. Psychol Med. 1995;25:247–261. doi: 10.1017/S0033291700036151. [DOI] [PubMed] [Google Scholar]
  • [52].Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res. 2000;126:413–431. doi: 10.1016/S0079-6123(00)26027-5. [DOI] [PubMed] [Google Scholar]
  • [53].Pascual-Leone A, Catala MD, Pascual-Leone Pascual A. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology. 1996;46:499–502. doi: 10.1212/WNL.46.2.499. [DOI] [PubMed] [Google Scholar]
  • [54].Gross M, Nakamura L, Pascual-Leone A, Fregni F. Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and metaanalysis comparing the recent vs. the earlier rTMS studies. Acta Psychiatr Scand. 2007;116:165–173. doi: 10.1111/j.1600-0447.2007.01049.x. [DOI] [PubMed] [Google Scholar]
  • [55].Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Perez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and metaanalysis. Br J Psychiatry. 2003;182:480–491. doi: 10.1192/bjp.182.6.480. [DOI] [PubMed] [Google Scholar]
  • [56].Weiland-Fiedler P, Erickson K, Waldeck T, Luckenbaugh DA, Pike D, Bonne O, et al. Evidence for continuing neuropsychological impairments in depression. J Affect Disord. 2004;82:253–258. doi: 10.1016/j.jad.2003.10.009. [DOI] [PubMed] [Google Scholar]
  • [57].Brand AN, Jolles J, Gispen-de Wied C. Recall and recognition memory deficits in depression. J Affect Disord. 1992;25:77–86. doi: 10.1016/0165-0327(92)90095-N. [DOI] [PubMed] [Google Scholar]
  • [58].Airaksinen E, Larsson M, Forsell Y. Neuropsychological functions in anxiety disorders in population-based samples: evidence of episodic memory dysfunction. J Psychiatr Res. 2005;39:207–214. doi: 10.1016/j.jpsychires.2004.06.001. [DOI] [PubMed] [Google Scholar]
  • [59].Sole-Padulles C, Bartres-Faz D, Junque C, Clemente IC, Molinuevo JL, Bargallo N, et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized shamcontrolled study. Cereb Cortex. 2006;16:1487–1493. doi: 10.1093/cercor/bhj083. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES