Abstract
Opiates and dopamine (DA) play key roles in learning and memory in humans and animals. Although interactions between these neurotransmitters have been found, their functional roles remain to be fully elucidated, and their dysfunction may contribute to human diseases and addiction. Here we investigated the interactions of morphine and dopaminergic neurotransmitter systems with respect to learning and memory in rhesus monkeys by using the Wisconsin General Test Apparatus (WGTA) delayed-response task. Morphine and DA agonists (SKF-38393, apomorphine and bromocriptine) or DA antagonists (SKF-83566, haloperidol and sulpiride) were co-administered to the monkeys 30 min prior to the task. We found that dose-patterned co-administration of morphine with D1 or D2 antagonists or agonists reversed the impaired spatial working memory induced by morphine or the compounds alone. For example, morphine at 0.01 mg/kg impaired spatial working memory, while morphine (0.01 mg/kg) and apomorphine (0.01 or 0.06 mg/kg) co-treatment ameliorated this effect. Our findings suggest that the interactions between morphine and dopaminergic compounds influence spatial working memory in rhesus monkeys. A better understanding of these interactive relationships may provide insights into human addiction.
Keywords: working memory, morphine, dopamine, rhesus monkey
Contributor Information
Jian-Hong Wang, Email: wangjh@mail.kiz.ac.cn.
Yuan-Ye Ma, Email: yuanma0716@vip.sina.com.
References
- [1].Arnsten A.F., Li B.M. Neurobiology of executive functions: cat echolamine influences on prefrontal cortical functions. Biol Psychiatry. 2005;57:1377–1384. doi: 10.1016/j.biopsych.2004.08.019. [DOI] [PubMed] [Google Scholar]
- [2].Otani S., Daniel H., Roisin M.P., Crepel F. Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons. Cereb Cortex. 2003;13:1251–1256. doi: 10.1093/cercor/bhg092. [DOI] [PubMed] [Google Scholar]
- [3].Goto Y., Yang C.R., Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry. 2010;67:199–207. doi: 10.1016/j.biopsych.2009.08.026. [DOI] [PubMed] [Google Scholar]
- [4].Friswell J., Phillips C., Holding J., Morgan C.J., Brandner B., Curran H.V. Acute effects of opioids on memory functions of healthy men and women. Psychopharmacology (Berl) 2008;198:243–250. doi: 10.1007/s00213-008-1123-x. [DOI] [PubMed] [Google Scholar]
- [5].Cleeland C.S., Nakamura Y., Howland E.W., Morgan N.R., Edwards K.R., Backonja M. Effects of oral morphine on cold pressor tolerance time and neuropsychological performance. Neuropsychopharmacology. 1996;15:252–262. doi: 10.1016/0893-133X(95)00205-R. [DOI] [PubMed] [Google Scholar]
- [6].Kerr B., Hill H., Coda B., Calogero M., Chapman C.R., Hunt E., et al. Concentration-related effects of morphine on cognition and motor control in human subjects. Neuropsychopharmacology. 1991;5:157–166. [PubMed] [Google Scholar]
- [7].Kamboj S.K., Tookman A., Jones L., Curran H.V. The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care. Pain. 2005;117:388–395. doi: 10.1016/j.pain.2005.06.022. [DOI] [PubMed] [Google Scholar]
- [8].Wang J.H., Liu X.F., Chen Y.M., Sun H.Y., Fu Y., Ma M.X., et al. Heroin impairs map-picture-following and memory tasks dependent on gender and orientation of the tasks. Behav Neurosci. 2007;121:653–664. doi: 10.1037/0735-7044.121.4.653. [DOI] [PubMed] [Google Scholar]
- [9].Schulze G.E., Paule M.G. Effects of morphine sulfate on operant behavior in rhesus monkeys. Pharmacol Biochem Behav. 1991;38:77–83. doi: 10.1016/0091-3057(91)90592-P. [DOI] [PubMed] [Google Scholar]
- [10].Shiigi Y., Takahashi M., Kaneto H. Facilitation of memory retrieval by pretest morphine mediated by mu but not delta and kappa opioid receptors. Psychopharmacology (Berl) 1990;102:329–332. doi: 10.1007/BF02244099. [DOI] [PubMed] [Google Scholar]
- [11].Bassareo V., Tanda G., Petromilli P., Giua C., Di Chiara G. Nonpsychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacology (Berl) 1996;124:293–299. doi: 10.1007/BF02247433. [DOI] [PubMed] [Google Scholar]
- [12].Pothos E., Rada P., Mark G.P., Hoebel B.G. Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 1991;566:348–350. doi: 10.1016/0006-8993(91)91724-F. [DOI] [PubMed] [Google Scholar]
- [13].Self D.W., McClenahan A.W., Beitner-Johnson D., Terwilliger R.Z., Nestler E.J. Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse. 1995;21:312–318. doi: 10.1002/syn.890210405. [DOI] [PubMed] [Google Scholar]
- [14].Beaulieu J.M., Gainetdinov R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642. [DOI] [PubMed] [Google Scholar]
- [15].Goldman-Rakic P.S. Motor control function of the prefrontal cortex. Ciba Found Symp. 1987;132:187–200. doi: 10.1002/9780470513545.ch12. [DOI] [PubMed] [Google Scholar]
- [16].Arnsten A.F., Cai J.X., Goldman-Rakic P.S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci. 1988;8:4287–4298. doi: 10.1523/JNEUROSCI.08-11-04287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Patti C.L., Kameda S.R., Carvalho R.C., Takatsu-Coleman A.L., Lopez G.B., Niigaki S.T., et al. Effects of morphine on the plusmaze discriminative avoidance task: role of state-dependent learning. Psychopharmacology (Berl) 2006;184:1–12. doi: 10.1007/s00213-005-0238-6. [DOI] [PubMed] [Google Scholar]
- [18].Tayebi Meybodi K., Vakili Zarch A., Zarrindast M.R., Djahanguiri B. Effects of ultra-low doses of morphine, naloxone and ethanol on morphine state-dependent memory of passive avoidance in mice. Behav Pharmacol. 2005;16:139–145. doi: 10.1097/00008877-200505000-00002. [DOI] [PubMed] [Google Scholar]
- [19].Watanabe M., Kodama T., Hikosaka K. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol. 1997;78:2795–2798. doi: 10.1152/jn.1997.78.5.2795. [DOI] [PubMed] [Google Scholar]
- [20].Cai J.X., Arnsten A.F. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther. 1997;283:183–189. [PubMed] [Google Scholar]
- [21].Wang M., Vijayraghavan S., Goldman-Rakic P.S. Selective D2 receptor actions on the functional circuitry of working memory. Science. 2004;303:853–856. doi: 10.1126/science.1091162. [DOI] [PubMed] [Google Scholar]
- [22].Juhasz J.R., Hasbi A., Rashid A.J., So C.H., George S.R., O’Dowd B.F. Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Eur J Pharmacol. 2008;581:235–243. doi: 10.1016/j.ejphar.2007.11.060. [DOI] [PubMed] [Google Scholar]
- [23].Becker A., Grecksch G., Kraus J., Peters B., Schroeder H., Schulz S., et al. Loss of locomotor sensitisation in response to morphine in D1 receptor deficient mice. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:562–568. doi: 10.1007/s002100100404. [DOI] [PubMed] [Google Scholar]