Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2013 Jan 30;29(1):16–27. doi: 10.1007/s12264-013-1306-2

Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study

Yihong Zhu 1,2, Bin Gao 1, Jianming Hua 3, Weibo Liu 3, Yichao Deng 4, Lijie Zhang 5, Biao Jiang 3,, Yufeng Zang 4,5
PMCID: PMC5561867  PMID: 23361519

Abstract

Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI), few studies have focused on spontaneous brain activity. In the current study, we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18 normal adult males. A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication, and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo, order counterbalanced between participants). We demonstrated that: (1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPHrelated regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo. Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults, even though there are no behavioral differences. This method can be applied to patients with mental illness who may be treated with MPH, and be used to compare the difference between patients taking MPH and normal participants, to help reveal the mechanism of how MPH works.

Keywords: methylphenidate, resting-state brain activity, male adults, functional magnetic resonance imaging, regional homogeneity

References

  • [1].Castellanos F.X., Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002;3:617–628. doi: 10.1038/nrn896. [DOI] [PubMed] [Google Scholar]
  • [2].Hill D.E., Yeo R.A., Campbell R.A., Hart B., Vigil J., Brooks W. Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology. 2003;17:496–506. doi: 10.1037/0894-4105.17.3.496. [DOI] [PubMed] [Google Scholar]
  • [3].Hynd G.W., Semrud-Clikeman M., Lorys A.R., Novey E.S., Eliopulos D. Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol. 1990;47:919–926. doi: 10.1001/archneur.1990.00530080107018. [DOI] [PubMed] [Google Scholar]
  • [4].Filipek P.A., Semrud-Clikeman M., Steingard R.J., Renshaw P.F., Kennedy D.N., Biederman J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997;48:589–601. doi: 10.1212/WNL.48.3.589. [DOI] [PubMed] [Google Scholar]
  • [5].Durston S., Hulshoff Pol H.E., Schnack H.G., Buitelaar J.K., Steenhuis M.P., Minderaa R.B., et al. Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2004;43:332–340. doi: 10.1097/00004583-200403000-00016. [DOI] [PubMed] [Google Scholar]
  • [6].Semrud-Clikeman M., Steingard R.J., Filipek P., Biederman J., Bekken K., Renshaw P.F. Using MRI to examine brain-behavior relationships in males with attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatry. 2000;39:477–484. doi: 10.1097/00004583-200004000-00017. [DOI] [PubMed] [Google Scholar]
  • [7].Berquin P.C., Giedd J.N., Jacobsen L.K., Hamburger S.D., Krain A.L., Rapoport J.L., et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50:1087–1093. doi: 10.1212/WNL.50.4.1087. [DOI] [PubMed] [Google Scholar]
  • [8].Mostofsky S.H., Reiss A.L., Lockhart P., Denckla M.B. Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J Child Neurol. 1998;13:434–439. doi: 10.1177/088307389801300904. [DOI] [PubMed] [Google Scholar]
  • [9].Vaidya C.J., Austin G., Kirkorian G., Ridlehuber H.W., Desmond J.E., Glover G.H., et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A. 1998;95:14494–14499. doi: 10.1073/pnas.95.24.14494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Rubia K., Overmeyer S., Taylor E., Brammer M., Williams S.C., Simmons A., et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry. 1999;156:891–896. doi: 10.1176/ajp.156.6.891. [DOI] [PubMed] [Google Scholar]
  • [11].Durston S., Tottenham N.T., Thomas K.M., Davidson M.C., Eigsti I.M., Yang Y., et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry. 2003;53:871–878. doi: 10.1016/S0006-3223(02)01904-2. [DOI] [PubMed] [Google Scholar]
  • [12].Bush G., Frazier J.A., Rauch S.L., Seidman L.J., Whalen P.J., Jenike M.A., et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry. 1999;45:1542–1552. doi: 10.1016/S0006-3223(99)00083-9. [DOI] [PubMed] [Google Scholar]
  • [13].Schweitzer J.B., Faber T.L., Grafton S.T., Tune L.E., Hoffman J.M., Kilts C.D. Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2000;157:278–280. doi: 10.1176/appi.ajp.157.2.278. [DOI] [PubMed] [Google Scholar]
  • [14].Ernst M., Kimes A.S., London E.D., Matochik J.A., Eldreth D., Tata S., et al. Neural substrates of decision making in adults with attention deficit hyperactivity disorder. Am J Psychiatry. 2003;160:1061–1070. doi: 10.1176/appi.ajp.160.6.1061. [DOI] [PubMed] [Google Scholar]
  • [15].Konrad K., Neufang S., Hanisch C., Fink G.R., Herpertz-Dahlmann B. Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder: evidence from an event-related functional magnetic resonance imaging study. Biol Psychiatry. 2006;59:643–651. doi: 10.1016/j.biopsych.2005.08.013. [DOI] [PubMed] [Google Scholar]
  • [16].Casey B.J., Durston S. From behavior to cognition to the brain and back: what have we learned from functional imaging studies of attention deficit hyperactivity disorder? Am J Psychiatry. 2006;163:957–960. doi: 10.1176/appi.ajp.163.6.957. [DOI] [PubMed] [Google Scholar]
  • [17].Solanto M.V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;94:127–152. doi: 10.1016/S0166-4328(97)00175-7. [DOI] [PubMed] [Google Scholar]
  • [18].Kuczenski R., Segal D.S. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther. 2001;296:876–883. [PubMed] [Google Scholar]
  • [19].Mehta M.A., Owen A.M., Sahakian B.J., Mavaddat N., Pickard J.D., Robbins T.W. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci. 2000;20:RC65. doi: 10.1523/JNEUROSCI.20-06-j0004.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Udo de Haes J.I., Maguire R.P., Jager P.L., Paans A.M., den Boer J.A. Methylphenidate-induced activation of the anterior cingulate but not the striatum: a [15O]H2O PET study in healthy volunteers. Hum Brain Mapp. 2007;28:625–635. doi: 10.1002/hbm.20293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Zang Y.F., Jin Z., Weng X.C., Zhang L., Zeng Y.W., Yang L., et al. Functional MRI in attention-deficit hyperactivity disorder: evidence for hypofrontality. Brain Dev. 2005;27:544–550. doi: 10.1016/j.braindev.2004.11.009. [DOI] [PubMed] [Google Scholar]
  • [22].Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev. 2003;9:184–195. doi: 10.1002/mrdd.10079. [DOI] [PubMed] [Google Scholar]
  • [23].Margulies D.S., Kelly A.M., Uddin L.Q., Biswal B.B., Castellanos F.X., Milham M.P. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage. 2007;37:579–588. doi: 10.1016/j.neuroimage.2007.05.019. [DOI] [PubMed] [Google Scholar]
  • [24].Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–682. doi: 10.1073/pnas.98.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Kim B.N., Lee J.S., Cho S.C., Lee D.S. Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Med J. 2001;42:19–29. doi: 10.3349/ymj.2001.42.1.19. [DOI] [PubMed] [Google Scholar]
  • [26].Lee J.S., Kim B.N., Kang E., Lee D.S., Kim Y.K., Chung J.K., et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Hum Brain Mapp. 2005;24:157–164. doi: 10.1002/hbm.20067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Langleben D.D., Acton P.D., Austin G., Elman I., Krikorian G., Monterosso J.R., et al. Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. J Nucl Med. 2002;43:1624–1629. [PubMed] [Google Scholar]
  • [28].Cho S.C., Hwang J.W., Kim B.N., Lee H.Y., Kim H.W., Lee J.S., et al. The relationship between regional cerebral blood flow and response to methylphenidate in children with attention-deficit hyperactivity disorder: comparison between non-responders to methylphenidate and responders. J Psychiatr Res. 2007;41:459–465. doi: 10.1016/j.jpsychires.2006.05.011. [DOI] [PubMed] [Google Scholar]
  • [29].Schweitzer J.B., Lee D.O., Hanford R.B., Tagamets M.A., Hoffman J.M., Grafton S.T., et al. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology. 2003;28:967–973. doi: 10.1038/sj.npp.1300110. [DOI] [PubMed] [Google Scholar]
  • [30].Zang Y.F., He Y., Zhu C.Z., Cao Q.J., Sui M.Q., Liang M., et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91. doi: 10.1016/j.braindev.2006.10.001. [DOI] [PubMed] [Google Scholar]
  • [31].Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport. 2006;17:1033–1036. doi: 10.1097/01.wnr.0000224769.92454.5d. [DOI] [PubMed] [Google Scholar]
  • [32].Tian L., Jiang T., Liang M., Zang Y., He Y., Sui M., et al. Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev. 2008;30:342–348. doi: 10.1016/j.braindev.2007.10.005. [DOI] [PubMed] [Google Scholar]
  • [33].Teicher M.H., Anderson C.M., Polcari A., Glod C.A., Maas L.C., Renshaw P.F. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med. 2000;6:470–473. doi: 10.1038/74737. [DOI] [PubMed] [Google Scholar]
  • [34].Anderson C.M., Polcari A., Lowen S.B., Renshaw P.F., Teicher M.H. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry. 2002;159:1322–1328. doi: 10.1176/appi.ajp.159.8.1322. [DOI] [PubMed] [Google Scholar]
  • [35].O’Gorman R.L., Mehta M.A., Asherson P., Zelaya F.O., Brookes K.J., Toone B.K., et al. Increased cerebral perfusion in adult attention deficit hyperactivity disorder is normalised by stimulant treatment: a non-invasive MRI pilot study. Neuroimage. 2008;42:36–41. doi: 10.1016/j.neuroimage.2008.04.169. [DOI] [PubMed] [Google Scholar]
  • [36].Wu T., Long X., Zang Y., Wang L., Hallett M., Li K., et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp. 2009;30:1502–1510. doi: 10.1002/hbm.20622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Kelly C., de Zubicaray G., Di Martino A., Copland D.A., Reiss P.T., Klein D.F., et al. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci. 2009;29:7364–7378. doi: 10.1523/JNEUROSCI.0810-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Cao X., Cao Q., Long X., Sun L., Sui M., Zhu C., et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res. 2009;1303:195–206. doi: 10.1016/j.brainres.2009.08.029. [DOI] [PubMed] [Google Scholar]
  • [39].Konrad K., Eickhoff S.B. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31:904–916. doi: 10.1002/hbm.21058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Anand A., Li Y., Wang Y., Wu J., Gao S., Bukhari L., et al. Antidepressant effect on connectivity of the mood-regulating circuit: an FMRI study. Neuropsychopharmacology. 2005;30:1334–1344. doi: 10.1038/sj.npp.1300725. [DOI] [PubMed] [Google Scholar]
  • [41].Zang Y., Jiang T., Lu Y., He Y., Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. doi: 10.1016/j.neuroimage.2003.12.030. [DOI] [PubMed] [Google Scholar]
  • [42].Li X.T. The distribution of left and right handedness in Chinese people. Acta Psychol Sin. 1983;15:268–275. [Google Scholar]
  • [43].Gong Y.X. Wechsler Adult Intelligence Scale-Revised Chinese Edition. Acta Psychol Sin. 1983;15:362–369. [Google Scholar]
  • [44].Schweitzer J.B., Lee D.O., Hanford R.B., Zink C.F., Ely T.D., Tagamets M.A., et al. Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: normalization of behavior but not related brain activity. Biol Psychiatry. 2004;56:597–606. doi: 10.1016/j.biopsych.2004.07.011. [DOI] [PubMed] [Google Scholar]
  • [45].Volkow N.D., Wang G.J., Fowler J.S., Logan J., Franceschi D., Maynard L., et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse. 2002;43:181–187. doi: 10.1002/syn.10038. [DOI] [PubMed] [Google Scholar]
  • [46].Goldstein M., Brendel G., Tuescher O., Pan H., Epstein J., Beutel M., et al. Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: an emotional linguistic go/no-go fMRI study. Neuroimage. 2007;36:1026–1040. doi: 10.1016/j.neuroimage.2007.01.056. [DOI] [PubMed] [Google Scholar]
  • [47].Song X.W., Dong Z.Y., Long X.Y., Li S.F., Zuo X.N., Zhu C.Z., et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6:e25031. doi: 10.1371/journal.pone.0025031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Kendall M., Gibbons J.D. Rank Correlation Methods. New York: Oxford University Press; 1990. [Google Scholar]
  • [49].Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–694. doi: 10.1038/35094500. [DOI] [PubMed] [Google Scholar]
  • [50].Zhu C.Z., Zang Y.F., Liang M., Tian L.X., He Y., Li X.B., et al. Discriminative analysis of brain function at resting-state for attention-deficit/hyperactivity disorder. Med Image Comput Comput Assist Interv. 2005;8:468–475. doi: 10.1007/11566489_58. [DOI] [PubMed] [Google Scholar]
  • [51].Liu H., Liu Z., Liang M., Hao Y., Tan L., Kuang F., et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport. 2006;17:19–22. doi: 10.1097/01.wnr.0000195666.22714.35. [DOI] [PubMed] [Google Scholar]
  • [52].He Y., Wang L., Zang Y., Tian L., Zhang X., Li K., et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage. 2007;35:488–500. doi: 10.1016/j.neuroimage.2006.11.042. [DOI] [PubMed] [Google Scholar]
  • [53].Liu X., Wang Y., Liu H., Liu Z., Zhou W. Diffusion tensor imaging and resting state functional magnetic resonance imaging on young patients with major depressive disorder. J Cent South Univ Med Sci. 2010;35:25–31. doi: 10.3969/j.issn.1672-7347.2010.01.004. [DOI] [PubMed] [Google Scholar]
  • [54].Paakki J.J., Rahko J., Long X., Moilanen I., Tervonen O., Nikkinen J., et al. Alterations in regional homogeneity of restingstate brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–179. doi: 10.1016/j.brainres.2009.12.081. [DOI] [PubMed] [Google Scholar]
  • [55].Zhong Y., Lu G., Zhang Z., Jiao Q., Li K., Liu Y. Altered regional synchronization in epileptic patients with generalized tonicclonic seizures. Epilepsy Res. 2011;97:83–91. doi: 10.1016/j.eplepsyres.2011.07.007. [DOI] [PubMed] [Google Scholar]
  • [56].Shafritz K.M., Marchione K.E., Gore J.C., Shaywitz S.E., Shaywitz B.A. The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. Am J Psychiatry. 2004;161:1990–1997. doi: 10.1176/appi.ajp.161.11.1990. [DOI] [PubMed] [Google Scholar]
  • [57].Kobel M., Bechtel N., Weber P., Specht K., Klarhofer M., Scheffler K., et al. Effects of methylphenidate on working memory functioning in children with attention deficit/hyperactivity disorder. Eur J Paediatr Neurol. 2009;13:516–523. doi: 10.1016/j.ejpn.2008.10.008. [DOI] [PubMed] [Google Scholar]
  • [58].Carmona S., Vilarroya O., Bielsa A., Tremols V., Soliva J.C., Rovira M., et al. Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett. 2005;389:88–93. doi: 10.1016/j.neulet.2005.07.020. [DOI] [PubMed] [Google Scholar]
  • [59].Krain A.L., Castellanos F.X. Brain development and ADHD. Clin Psychol Rev. 2006;26:433–444. doi: 10.1016/j.cpr.2006.01.005. [DOI] [PubMed] [Google Scholar]
  • [60].Rubia K., Smith A.B., Brammer M.J., Toone B., Taylor E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry. 2005;162:1067–1075. doi: 10.1176/appi.ajp.162.6.1067. [DOI] [PubMed] [Google Scholar]
  • [61].Rubia K., Smith A.B., Brammer M.J., Taylor E. Temporal lobe dysfunction in medication-naive boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol Psychiatry. 2007;62:999–1006. doi: 10.1016/j.biopsych.2007.02.024. [DOI] [PubMed] [Google Scholar]
  • [62].Smith A.B., Taylor E., Brammer M., Toone B., Rubia K. Taskspecific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry. 2006;163:1044–1051. doi: 10.1176/appi.ajp.163.6.1044. [DOI] [PubMed] [Google Scholar]
  • [63].Banaschewski T., Brandeis D., Heinrich H., Albrecht B., Brunner E., Rothenberger A. Association of ADHD and conduct disorder—brain electrical evidence for the existence of a distinct subtype. J Child Psychol Psychiatry. 2003;44:356–376. doi: 10.1111/1469-7610.00127. [DOI] [PubMed] [Google Scholar]
  • [64].Jonkman L.M., Kemner C., Verbaten M.N., Van Engeland H., Camfferman G., Buitelaar J.K., et al. Attentional capacity, a probe ERP study: differences between children with attention-deficit hyperactivity disorder and normal control children and effects of methylphenidate. Psychophysiology. 2000;37:334–346. doi: 10.1111/1469-8986.3730334. [DOI] [PubMed] [Google Scholar]
  • [65].Kemner C., Verbaten M.N., Koelega H.S., Buitelaar J.K., van der Gaag R.J., Camfferman G., et al. Event-related brain potentials in children with attention-deficit and hyperactivity disorder: effects of stimulus deviancy and task relevance in the visual and auditory modality. Biol Psychiatry. 1996;40:522–534. doi: 10.1016/0006-3223(95)00429-7. [DOI] [PubMed] [Google Scholar]
  • [66].Hermens D.F., Williams L.M., Clarke S., Kohn M., Cooper N., Gordon E. Responses to methylphenidate in adolescent AD/HD: evidence from concurrently recorded autonomic (EDA) and central (EEG and ERP) measures. Int J Psychophysiol. 2005;58:21–33. doi: 10.1016/j.ijpsycho.2005.03.006. [DOI] [PubMed] [Google Scholar]
  • [67].Kelly A.M., Margulies D.S., Castellanos F.X. Recent advances in structural and functional brain imaging studies of attentiondeficit/hyperactivity disorder. Curr Psychiatry Rep. 2007;9:401–407. doi: 10.1007/s11920-007-0052-4. [DOI] [PubMed] [Google Scholar]
  • [68].Silk T., Vance A., Rinehart N., Egan G., O’Boyle M., Bradshaw J.L., et al. Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: functional magnetic resonance imaging study. Br J Psychiatry. 2005;187:282–283. doi: 10.1192/bjp.187.3.282. [DOI] [PubMed] [Google Scholar]
  • [69].Beauchamp M.S., Lee K.E., Haxby J.V., Martin A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron. 2002;34:149–159. doi: 10.1016/S0896-6273(02)00642-6. [DOI] [PubMed] [Google Scholar]
  • [70].Simmonds D.J., Fotedar S.G., Suskauer S.J., Pekar J.J., Denckla M.B., Mostofsky S.H. Functional brain correlates of response time variability in children. Neuropsychologia. 2007;45:2147–2157. doi: 10.1016/j.neuropsychologia.2007.01.013. [DOI] [PubMed] [Google Scholar]
  • [71].Lou H.C., Henriksen L., Bruhn P. Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol. 1984;41:825–829. doi: 10.1001/archneur.1984.04050190031010. [DOI] [PubMed] [Google Scholar]
  • [72].Lou H.C., Henriksen L., Bruhn P., Borner H., Nielsen J.B. Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol. 1989;46:48–52. doi: 10.1001/archneur.1989.00520370050018. [DOI] [PubMed] [Google Scholar]
  • [73].Dibbets P., Evers E.A., Hurks P.P., Bakker K., Jolles J. Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. Neuropsychology. 2010;24:413–423. doi: 10.1037/a0018997. [DOI] [PubMed] [Google Scholar]
  • [74].Prox V., Dietrich D.E., Zhang Y., Emrich H.M., Ohlmeier M.D. Attentional processing in adults with ADHD as reflected by event-related potentials. Neurosci Lett. 2007;419:236–241. doi: 10.1016/j.neulet.2007.04.011. [DOI] [PubMed] [Google Scholar]
  • [75].Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2006;400:39–43. doi: 10.1016/j.neulet.2006.02.022. [DOI] [PubMed] [Google Scholar]
  • [76].Hoptman M.J., Zuo X.N., Butler P.D., Javitt D.C., D’Angelo D., Mauro C.J., et al. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res. 2010;117:13–20. doi: 10.1016/j.schres.2009.09.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77].Liu Y., Liang P., Duan Y., Jia X., Wang F., Yu C., et al. Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study. Eur J Radiol. 2011;80:407–411. doi: 10.1016/j.ejrad.2010.05.002. [DOI] [PubMed] [Google Scholar]
  • [78].Scarmeas N., Anderson K.E., Hilton J., Park A., Habeck C., Flynn J., et al. APOE-dependent PET patterns of brain activation in Alzheimer disease. Neurology. 2004;63:913–915. doi: 10.1212/01.WNL.0000137274.93125.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Bogousslavsky J., Miklossy J., Deruaz J.P., Assal G., Regli F. Lingual and fusiform gyri in visual processing: a clinicopathologic study of superior altitudinal hemianopia. J Neurol Neurosurg Psychiatry. 1987;50:607–614. doi: 10.1136/jnnp.50.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [80].Lou H.C., Andresen J., Steinberg B., McLaughlin T., Friberg L. The striatum in a putative cerebral network activated by verbal awareness in normals and in ADHD children. Eur J Neurol. 1998;5:67–74. doi: 10.1046/j.1468-1331.1998.510067.x. [DOI] [PubMed] [Google Scholar]
  • [81].Cao Q., Zang Y., Zhu C., Cao X., Sun L., Zhou X., et al. Alerting deficits in children with attention deficit/hyperactivity disorder: event-related fMRI evidence. Brain Res. 2008;1219:159–168. doi: 10.1016/j.brainres.2008.04.028. [DOI] [PubMed] [Google Scholar]
  • [82].Li F., Li B.J., Hu D.W., Liu J., He Z., Zhou S.K. A functional MRI study in ADHD children with impulsivity. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12:24–28. [PubMed] [Google Scholar]
  • [83].Almeida L.G., Ricardo-Garcell J., Prado H., Barajas L., Fernandez-Bouzas A., Avila D., et al. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: a cross-sectional study. J Psychiatr Res. 2010;44:1214–1223. doi: 10.1016/j.jpsychires.2010.04.026. [DOI] [PubMed] [Google Scholar]
  • [84].Overmeyer S., Bullmore E.T., Suckling J., Simmons A., Williams S.C., Santosh P.J., et al. Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol Med. 2001;31:1425–1435. doi: 10.1017/S0033291701004706. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES