Abstract
During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.
Keywords: neural circuits, emotion and memory, funding, Grand Research Plan
References
- [1].Lau P.M., Bi G.Q. Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc Natl Acad Sci U S A. 2005;102(29):10333–10338. doi: 10.1073/pnas.0500717102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Li A., Gong H., Zhang B., Wang Q., Yan C., Wu J., et al. Microoptical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science. 2010;330(6009):1404–1408. doi: 10.1126/science.1191776. [DOI] [PubMed] [Google Scholar]
- [3].Zhang X., Zhaoping L., Zhou T., Fang F. Neural activities in v1 create a bottom-up saliency map. Neuron. 2012;73(1):183–192. doi: 10.1016/j.neuron.2011.10.035. [DOI] [PubMed] [Google Scholar]
- [4].Slutsky I., Abumaria N., Wu L.J., Huang C., Zhang L., Li B., et al. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010;65(2):165–177. doi: 10.1016/j.neuron.2009.12.026. [DOI] [PubMed] [Google Scholar]
- [5].He D., Kersten D., Fang F. Opposite modulation of high- and low-level visual aftereffects by perceptual grouping. Curr Biol. 2012;22(11):1040–1045. doi: 10.1016/j.cub.2012.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Li M., Wen S., Guo X., Bai B., Gong Z., Liu X., et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res. 2012;40(22):11714–11727. doi: 10.1093/nar/gks943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].An X., Gong H., Qian L., Wang X., Pan Y., Zhang X., et al. Distinct functional organizations for processing different motion signals in V1, V2, and V4 of macaque. J Neurosci. 2012;32(39):13363–13379. doi: 10.1523/JNEUROSCI.1900-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Huang C.B., Zhou Y., Lu Z.L. Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proc Natl Acad Sci U S A. 2008;105(10):4068–4073. doi: 10.1073/pnas.0800824105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Wu Y., Ren Q., Li H., Guo A. The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila. Learn Mem. 2012;19(10):478–486. doi: 10.1101/lm.025726.112. [DOI] [PubMed] [Google Scholar]
- [10].Wu Z., Guo A. A model study on the circuit mechanism underlying decision-making in Drosophila. Neural Netw. 2011;24(4):333–344. doi: 10.1016/j.neunet.2011.01.002. [DOI] [PubMed] [Google Scholar]
- [11].Zhao X., Liu Y., Wang X., Liu B., Xi Q., Guo Q., et al. Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state fMRI study. PLoS One. 2012;7(3):e33540. doi: 10.1371/journal.pone.0033540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Yao Z., Zhang Y., Lin L., Zhou Y., Xu C., Jiang T. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol. 2010;6(11):e1001006. doi: 10.1371/journal.pcbi.1001006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Bai F., Shu N., Yuan Y., Shi Y., Yu H., Wu D., et al. Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci. 2012;32(12):4307–4318. doi: 10.1523/JNEUROSCI.5061-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Pan X., Gong N., Zhao J., Yu Z., Gu F., Chen J., et al. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain. 2010;133(Pt5):1342–1351. doi: 10.1093/brain/awq069. [DOI] [PubMed] [Google Scholar]
- [15].Li K.X., Lu Y.M., Xu Z.H., Zhang J., Zhu J.M., Zhang J.M., et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci. 2011;15(2):267–273. doi: 10.1038/nn.3006. [DOI] [PubMed] [Google Scholar]
- [16].Llewellyn M.E., Thompson K.R., Deisseroth K., Delp S.L. Orderly recruitment of motor units under optical control in vivo. Nat Med. 2010;16(10):1161–1165. doi: 10.1038/nm.2228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Lu Y., Li Y., Pan J., Wei P., Liu N., Wu B., et al. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials. 2012;33(2):378–394. doi: 10.1016/j.biomaterials.2011.09.083. [DOI] [PubMed] [Google Scholar]
- [18].Yizhar O., Fenno L.E., Prigge M., Schneider F., Davidson T.J., O’shea D.J., et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477(7363):171–178. doi: 10.1038/nature10360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Ren J., Qin C., Hu F., Tan J., Qiu L., Zhao S., et al. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron. 2011;69(3):445–452. doi: 10.1016/j.neuron.2010.12.038. [DOI] [PubMed] [Google Scholar]
