Abstract
Simultaneous multisite recording using multi-electrode arrays (MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology. Over the past 40 years, great efforts have been made by both scientists and commercial concerns, to advance this technique. The MEA technique has been widely applied to many regions of the brain, retina, heart and smooth muscle in various studies at the network level. The present review starts from the development of MEA techniques and their uses in brain preparations, and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains. Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays, its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.
Keywords: multi-electrode arrays, acute hippocampal slices, spatial neural plasticity, temporal neural plasticity, network electrophysiology
Footnotes
These authors contributed equally to this work
References
- [1].Kandel E.R., Schwartz J.H., Jessell T.M. Principles of Neural Science. 4th ed. New York: McGraw-Hill; 2000. p. 1414. [Google Scholar]
- [2].Taketani M., Baudry M. Advances in Network Electrophysiology Using Multi-electrode Arrays. New York: Springer Press; 2006. p. 478. [Google Scholar]
- [3].Nicolelis M.A. Methods for Neural Ensemble Recordings. Boca Raton (FL): CRC Press; 2008. p. 269. [PubMed] [Google Scholar]
- [4].Thomas C.A., Jr, Springer P.A., Loeb G.E., Berwald-Netter Y., Okun L.M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74:61–66. doi: 10.1016/0014-4827(72)90481-8. [DOI] [PubMed] [Google Scholar]
- [5].Gross G.W., Rieske E., Kreutzberg G.W., Meyer A. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett. 1977;6:101–105. doi: 10.1016/0304-3940(77)90003-9. [DOI] [PubMed] [Google Scholar]
- [6].Gross G.W. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng. 1979;26:273–279. doi: 10.1109/TBME.1979.326402. [DOI] [PubMed] [Google Scholar]
- [7].Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods. 1980;2:19–31. doi: 10.1016/0165-0270(80)90042-4. [DOI] [PubMed] [Google Scholar]
- [8].Israel D.A., Barry W.H., Edell D.J., Mark R.G. An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol. 1984;247:H669–674. doi: 10.1152/ajpheart.1984.247.4.H669. [DOI] [PubMed] [Google Scholar]
- [9].Novak J.L., Wheeler B.C. Recording from the Aplysia abdominal ganglion with a planar microelectrode array. IEEE Trans Biomed Eng. 1986;33:196–202. doi: 10.1109/TBME.1986.325891. [DOI] [PubMed] [Google Scholar]
- [10].Novak J.L., Wheeler B.C. Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array. J Neurosci Methods. 1988;23:149–159. doi: 10.1016/0165-0270(88)90187-2. [DOI] [PubMed] [Google Scholar]
- [11].Regehr W.G., Pine J., Cohan C.S., Mischke M.D., Tank D.W. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods. 1989;30:91–106. doi: 10.1016/0165-0270(89)90055-1. [DOI] [PubMed] [Google Scholar]
- [12].Connolly P., Clark P., Curtis A.S., Dow J.A., Wilkinson C.D. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron. 1990;5:223–234. doi: 10.1016/0956-5663(90)80011-2. [DOI] [PubMed] [Google Scholar]
- [13].Martinoia S., Bove M., Carlini G., Ciccarelli C., Grattarola M., Storment C., et al. A general-purpose system for long-term recording from a microelectrode array coupled to excitable cells. J Neurosci Methods. 1993;48:115–121. doi: 10.1016/S0165-0270(05)80013-5. [DOI] [PubMed] [Google Scholar]
- [14].Nisch W., Bock J., Egert U., Hammerle H., Mohr A. A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosens Bioelectron. 1994;9:737–741. doi: 10.1016/0956-5663(94)80072-3. [DOI] [PubMed] [Google Scholar]
- [15].Egert U., Schlosshauer B., Fennrich S., Nisch W., Fejtl M., Knott T., et al. A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Brain Res Protoc. 1998;2:229–242. doi: 10.1016/S1385-299X(98)00013-0. [DOI] [PubMed] [Google Scholar]
- [16].Oka H., Shimono K., Ogawa R., Sugihara H., Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods. 1999;93:61–67. doi: 10.1016/S0165-0270(99)00113-2. [DOI] [PubMed] [Google Scholar]
- [17].Honma S., Katsuno Y., Tanahashi Y., Abe H., Honma K. Circadian rhythms of arginine vasopressin and vasoactive intestinal polypeptide do not depend on cytoarchitecture of dispersed cell culture of rat suprachiasmatic nucleus. Neuroscience. 1998;86:967–976. doi: 10.1016/S0306-4522(98)00078-5. [DOI] [PubMed] [Google Scholar]
- [18].Egert U., Heck D., Aertsen A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp Brain Res. 2002;142:268–274. doi: 10.1007/s00221-001-0932-5. [DOI] [PubMed] [Google Scholar]
- [19].Wirth C., Luscher H.R. Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays. J Neurophysiol. 2004;91:1635–1647. doi: 10.1152/jn.00950.2003. [DOI] [PubMed] [Google Scholar]
- [20].Morin F.O., Takamura Y., Tamiya E. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng. 2005;100:131–143. doi: 10.1263/jbb.100.131. [DOI] [PubMed] [Google Scholar]
- [21].He Y., Liu M.G., Gong K.R., Chen J. Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: Multi-electrode array recordings. Neurosci Bull. 2009;25:309–318. doi: 10.1007/s12264-009-0831-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Wang D.D., Li Z., Chang Y., Wang R.R., Chen X.F., Zhao Z.Y., et al. Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices. Neurosci Bull. 2010;26:175–187. doi: 10.1007/s12264-010-0308-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Stett A., Egert U., Guenther E., Hofmann F., Meyer T., Nisch W., et al. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003;377:486–495. doi: 10.1007/s00216-003-2149-x. [DOI] [PubMed] [Google Scholar]
- [24].Thiebaud P., de Rooij N.F., Koudelka-Hep M., Stoppini L. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Trans Biomed Eng. 1997;44:1159–1163. doi: 10.1109/10.641344. [DOI] [PubMed] [Google Scholar]
- [25].Heuschkel M.O., Fejtl M., Raggenbass M., Bertrand D., Renaud P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods. 2002;114:135–148. doi: 10.1016/S0165-0270(01)00514-3. [DOI] [PubMed] [Google Scholar]
- [26].Fuster J.M. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate. Cambridge: MIT Press; 1999. p. 327. [Google Scholar]
- [27].Spruston N., Cang J. Timing isn’t everything. Nat Neurosci. 2010;13:277–279. doi: 10.1038/nn0310-277. [DOI] [PubMed] [Google Scholar]
- [28].Clopath C., Busing L., Vasilaki E., Gerstner W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci. 2010;13:344–352. doi: 10.1038/nn.2479. [DOI] [PubMed] [Google Scholar]
- [29].Chen J., Lariviere W.R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol. 2010;92:151–183. doi: 10.1016/j.pneurobio.2010.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Kandel E.R., Squire L.R. Neuroscience: breaking down scientific barriers to the study of brain and mind. Science. 2000;290:1113–1120. doi: 10.1126/science.290.5494.1113. [DOI] [PubMed] [Google Scholar]
- [31].Zhao X.Y., Liu M.G., Yuan D.L., Wang Y., He Y., Wang D.D., et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain. 2009;5:55. doi: 10.1186/1744-8069-5-55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Liu M.G., Wang R.R., Chen X.F., Zhang F.K., Cui X.Y., Chen J. Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: multi-electrode array recordings. Brain Res. 2011;1382:57–69. doi: 10.1016/j.brainres.2011.01.076. [DOI] [PubMed] [Google Scholar]
- [33].Liu M.G., Lu D., Wang Y., Chen X.F., Li Z., Xu Y., et al. Counteracting roles of metabotropic glutamate receptor subtypes 1 and 5 in regulation of pain-related spatial and temporal synaptic plasticity in rat entorhinal-hippocampal pathways. Neurosci Lett. 2012;507:38–42. doi: 10.1016/j.neulet.2011.11.046. [DOI] [PubMed] [Google Scholar]
- [34].Nicholson C., Llinas R. Real time current source-density analysis using multi-electrode array in cat cerebellum. Brain Res. 1975;100:418–424. doi: 10.1016/0006-8993(75)90494-1. [DOI] [PubMed] [Google Scholar]
- [35].Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
- [36].Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21. doi: 10.1016/j.neuron.2004.09.012. [DOI] [PubMed] [Google Scholar]
- [37].Citri A., Malenka R.C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41. doi: 10.1038/sj.npp.1301559. [DOI] [PubMed] [Google Scholar]
- [38].Shimono K., Baudry M., Ho L., Taketani M., Lynch G. Long-term recording of LTP in cultured hippocampal slices. Neural Plast. 2002;9:249–254. doi: 10.1155/NP.2002.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Kemp A., Manahan-Vaughan D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 2007;30:111–118. doi: 10.1016/j.tins.2007.01.002. [DOI] [PubMed] [Google Scholar]
- [40].Massey P.V., Bashir Z.I. Long-term depression: multiple forms and implications for brain function. Trends Neurosci. 2007;30:176–184. doi: 10.1016/j.tins.2007.02.005. [DOI] [PubMed] [Google Scholar]
- [41].Collingridge G.L., Peineau S., Howland J.G., Wang Y.T. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11:459–473. doi: 10.1038/nrn2867. [DOI] [PubMed] [Google Scholar]
- [42].Hofmann F., Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris. 2006;99:125–132. doi: 10.1016/j.jphysparis.2005.12.005. [DOI] [PubMed] [Google Scholar]
- [43].Steidl E.M., Neveu E., Bertrand D., Buisson B. The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res. 2006;1096:70–84. doi: 10.1016/j.brainres.2006.04.034. [DOI] [PubMed] [Google Scholar]
- [44].Duport S., Millerin C., Muller D., Correges P. A metallic multisite recording system designed for continuous long-term monitoring of electrophysiological activity in slice cultures. Biosens Bioelectron. 1999;14:369–376. doi: 10.1016/S0956-5663(99)00015-9. [DOI] [PubMed] [Google Scholar]
- [45].Shimono K., Brucher F., Granger R., Lynch G., Taketani M. Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci. 2000;20:8462–8473. doi: 10.1523/JNEUROSCI.20-22-08462.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Shimono K., Baudry M., Panchenko V., Taketani M. Chronic multichannel recordings from organotypic hippocampal slice cultures: protection from excitotoxic effects of NMDA by non-competitive NMDA antagonists. J Neurosci Methods. 2002;120:193–202. doi: 10.1016/S0165-0270(02)00202-9. [DOI] [PubMed] [Google Scholar]
- [47].Shimono K., Kubota D., Brucher F., Taketani M., Lynch G. Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal field CA1. Brain Res. 2002;950:279–287. doi: 10.1016/S0006-8993(02)03052-4. [DOI] [PubMed] [Google Scholar]
- [48].Stoppini L., Duport S., Correges P. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures. J Neurosci Methods. 1997;72:23–33. doi: 10.1016/S0165-0270(96)00151-3. [DOI] [PubMed] [Google Scholar]
- [49].Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures. Front Comput Neuroscience. 2011;5:46. doi: 10.3389/fncom.2011.00046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Ito D., Tamate H., Nagayama M., Uchida T., Kudoh S.N., Gohara K. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience. 2010;171:50–61. doi: 10.1016/j.neuroscience.2010.08.038. [DOI] [PubMed] [Google Scholar]
- [51].Krause M., Jia Y. Serotonergic modulation of carbachol-induced rhythmic activity in hippocampal slices. Neuropharmacology. 2005;48:381–390. doi: 10.1016/j.neuropharm.2004.10.011. [DOI] [PubMed] [Google Scholar]
- [52].Huang C.W., Hsieh Y.J., Tsai J.J., Huang C.C. Effects of lamotrigine on field potentials, propagation, and long-term potentiation in rat prefrontal cortex in multi-electrode recording. J Neurosci Res. 2006;83:1141–1150. doi: 10.1002/jnr.20797. [DOI] [PubMed] [Google Scholar]
- [53].Berger T.W., Song D., Chan R.H., Marmarelis V.Z., LaCoss J., Wills J., et al. A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans Neural Syst Rehabil Eng. 2012;20:198–211. doi: 10.1109/TNSRE.2012.2189133. [DOI] [PMC free article] [PubMed] [Google Scholar]