Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Aug 7;28(4):333–341. doi: 10.1007/s12264-012-1252-4

Chromophore-assisted laser inactivation in neural development

Wei Li 1, Nico Stuurman 2, Guangshuo Ou 1,
PMCID: PMC5561893  PMID: 22833033

Abstract

Chromophore-assisted laser inactivation (CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells. Neural development includes highly dynamic cellular processes such as asymmetric cell division, migration, axon and dendrite outgrowth and synaptogenesis. Although many key molecules of neural development have been identified since the past decades, their spatiotemporal contributions to these cellular events are not well understood. CALI provides an appealing tool for elucidating the precise functions of these molecules during neural development. In this review, we summarize the principles of CALI, a recent microscopic setup to perform CALI experiments, and the application of CALI to the study of growth-cone motility and neuroblast asymmetric division.

Keywords: chromophore-assisted laser inactivation, growth cone, neuroblast, asymmetric cell division

References

  • [1].Hoffman-Kim D., Diefenbach T.J., Eustace B.K., Jay D.G. Chromophore-assisted laser inactivation. Methods Cell Biol. 2007;82:335–354. doi: 10.1016/S0091-679X(06)82011-X. [DOI] [PubMed] [Google Scholar]
  • [2].Jacobson K., Rajfur Z., Vitriol E., Hahn K. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol. 2008;18:443–450. doi: 10.1016/j.tcb.2008.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Beck S., Sakurai T., Eustace B.K., Beste G., Schier R., Rudert F., et al. Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics. 2002;2:247–255. doi: 10.1002/1615-9861(200203)2:3<247::AID-PROT247>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • [4].Buchstaller A., Jay D.G. Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech. 2000;48:97–106. doi: 10.1002/(SICI)1097-0029(20000115)48:2<97::AID-JEMT5>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  • [5].Diamond P., Mallavarapu A., Schnipper J., Booth J., Park L., O’Connor T.P., et al. Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons. Neuron. 1993;11:409–421. doi: 10.1016/0896-6273(93)90146-I. [DOI] [PubMed] [Google Scholar]
  • [6].Jay D.G., Keshishian H. Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature. 1990;348:548–550. doi: 10.1038/348548a0. [DOI] [PubMed] [Google Scholar]
  • [7].Tour O., Meijer R.M., Zacharias D.A., Adams S.R., Tsien R.Y. Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol. 2003;21:1505–1508. doi: 10.1038/nbt914. [DOI] [PubMed] [Google Scholar]
  • [8].Rajfur Z., Roy P., Otey C., Romer L., Jacobson K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol. 2002;4:286–293. doi: 10.1038/ncb772. [DOI] [PubMed] [Google Scholar]
  • [9].Bulina M.E., Lukyanov K.A., Britanova O.V., Onichtchouk D., Lukyanov S., Chudakov D.M. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc. 2006;1:947–953. doi: 10.1038/nprot.2006.89. [DOI] [PubMed] [Google Scholar]
  • [10].Bulina M.E., Chudakov D.M., Britanova O.V., Yanushevich Y.G., Staroverov D.B., Chepurnykh T.V., et al. A genetically encoded photosensitizer. Nat Biotechnol. 2006;24:95–99. doi: 10.1038/nbt1175. [DOI] [PubMed] [Google Scholar]
  • [11].Vitriol E.A., Uetrecht A.C., Shen F., Jacobson K., Bear J.E. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci U S A. 2007;104:6702–6707. doi: 10.1073/pnas.0701801104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Tanabe T., Oyamada M., Fujita K., Dai P., Tanaka H., Takamatsu T. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods. 2005;27:503–505. doi: 10.1038/nmeth770. [DOI] [PubMed] [Google Scholar]
  • [13].Pletnev S., Gurskaya N.G., Pletneva N.V., Lukyanov K.A., Chudakov D.M., Martynov V.I., et al. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem. 2009;284:32028–32039. doi: 10.1074/jbc.M109.054973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Carpentier P., Violot S., Blanchoin L., Bourgeois D. Structural basis for the phototoxicity of the fluorescent protein KillerRed. FEBS Lett. 2009;583:2839–2842. doi: 10.1016/j.febslet.2009.07.041. [DOI] [PubMed] [Google Scholar]
  • [15].Jay D.G., Sakurai T. Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer. Biochim Biophys Acta. 1999;1424:M39–48. doi: 10.1016/s0304-419x(99)00022-0. [DOI] [PubMed] [Google Scholar]
  • [16].Jay D.G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci U S A. 1988;85:5454–5458. doi: 10.1073/pnas.85.15.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Ou G., Stuurman N., D’Ambrosio M., Vale R.D. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science. 2010;330:677–680. doi: 10.1126/science.1196112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Schmucker D., Su A.L., Beermann A., Jackle H., Jay D.G. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc Natl Acad Sci U S A. 1994;91:2664–2668. doi: 10.1073/pnas.91.7.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Monier B., Pelissier-Monier A., Brand A.H., Sanson B. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat Cell Biol. 2010;12:60–65. doi: 10.1038/ncb2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Vitriol E.A., Zheng J.Q. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron. 2012;73:1068–1081. doi: 10.1016/j.neuron.2012.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Takei K., Shin R.M., Inoue T., Kato K., Mikoshiba K. Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science. 1998;282:1705–1708. doi: 10.1126/science.282.5394.1705. [DOI] [PubMed] [Google Scholar]
  • [22].Takei K., Chan T.A., Wang F.S., Deng H., Rutishauser U., Jay D.G. The neural cell adhesion molecules L1 and NCAM-180 act in different steps of neurite outgrowth. J Neurosci. 1999;19:9469–9479. doi: 10.1523/JNEUROSCI.19-21-09469.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Chang H.Y., Takei K., Sydor A.M., Born T., Rusnak F., Jay D.G. Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature. 1995;376:686–690. doi: 10.1038/376686a0. [DOI] [PubMed] [Google Scholar]
  • [24].Hoffman-Kim D., Kerner J.A., Chen A., Xu A., Wang T.F., Jay D.G. pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons. Mol Cell Neurosci. 2002;21:81–93. doi: 10.1006/mcne.2002.1157. [DOI] [PubMed] [Google Scholar]
  • [25].Castelo L., Jay D.G. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol Biol Cell. 1999;10:1511–1520. doi: 10.1091/mbc.10.5.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Sydor A.M., Su A.L., Wang F.S., Xu A., Jay D.G. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol. 1996;134:1197–1207. doi: 10.1083/jcb.134.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Diefenbach T.J., Latham V.M., Yimlamai D., Liu C.A., Herman I.M., Jay D.G. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol. 2002;158:1207–1217. doi: 10.1083/jcb.200202028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Wang F.S., Wolenski J.S., Cheney R.E., Mooseker M.S., Jay D.G. Function of myosin-V in filopodial extension of neuronal growth cones. Science. 1996;273:660–663. doi: 10.1126/science.273.5275.660. [DOI] [PubMed] [Google Scholar]
  • [29].Liu C.W., Lee G., Jay D.G. Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton. 1999;43:232–242. doi: 10.1002/(SICI)1097-0169(1999)43:3<232::AID-CM6>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  • [30].Mack T.G., Koester M.P., Pollerberg G.E. The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones. Mol Cell Neurosci. 2000;15:51–65. doi: 10.1006/mcne.1999.0802. [DOI] [PubMed] [Google Scholar]
  • [31].Higurashi M, Iketani M, Takei K, Yamashita N, Aoki R, Kawahara N, et al. Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering. Dev Neurobiol 2012. doi: 10.1002/dneu.22017. [DOI] [PubMed]
  • [32].Nadar V.C., Lin S., Baas P.W. Microtubule redistribution in growth cones elicited by focal inactivation of kinesin-5. J Neurosci. 2012;32:5783–5794. doi: 10.1523/JNEUROSCI.0144-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Abe T.K., Honda T., Takei K., Mikoshiba K., Hoffman-Kim D., Jay D.G., et al. Dynactin is essential for growth cone advance. Biochem Biophys Res Commun. 2008;372:418–422. doi: 10.1016/j.bbrc.2008.05.008. [DOI] [PubMed] [Google Scholar]
  • [34].Qi Y.B., Garren E.J., Shu X., Tsien R.Y., Jin Y. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A. 2012;109:7499–7504. doi: 10.1073/pnas.1204096109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Wu Y.I., Frey D., Lungu O.I., Jaehrig A., Schlichting I., Kuhlman B., et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature. 2009;461:104–108. doi: 10.1038/nature08241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Levskaya A., Weiner O.D., Lim W.A., Voigt C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature. 2009;461:997–1001. doi: 10.1038/nature08446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Takemoto K., Matsuda T., McDougall M., Klaubert D.H., Hasegawa A., Los G.V., et al. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. ACS Chem Biol. 2011;6:401–406. doi: 10.1021/cb100431e. [DOI] [PubMed] [Google Scholar]
  • [38].Muller B.K., Jay D.G., Bonhoeffer F. Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule. Curr Biol. 1996;6:1497–1502. doi: 10.1016/S0960-9822(96)00754-3. [DOI] [PubMed] [Google Scholar]
  • [39].Sakurai T., Wong E., Drescher U., Tanaka H., Jay D.G. Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo. Proc Natl Acad Sci U S A. 2002;99:10795–10800. doi: 10.1073/pnas.162161499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Wong E.V., David S., Jacob M.H., Jay D.G. Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci. 2003;23:3112–3117. doi: 10.1523/JNEUROSCI.23-08-03112.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES