Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 10;28(4):456–467. doi: 10.1007/s12264-012-1254-2

Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention

Zhang-Ye Dong 1, Dong-Qiang Liu 2, Jue Wang 2, Zhao Qing 1, Zhen-Xiang Zang 3, Chao-Gan Yan 1,4, Yu-Feng Zang 1,2,
PMCID: PMC5561895  PMID: 22833043

Abstract

Objective

Behavioral studies have suggested a low-frequency (0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time. Conventional task designs for functional magnetic resonance imaging (fMRI) studies are not appropriate for frequency analysis. The present study aimed to propose a new paradigm, real-time finger force feedback (RT-FFF), to study the brain mechanisms of sustained attention and neurofeedback.

Methods

We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults (19 males; mean age, 22.3 years). Two fMRI sessions, in RT-FFF and sham finger force feedback (S-FFF) states, were acquired (TR 2 s, Siemens Trio 3-Tesla scanner, 8 min each, counter-balanced). Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.

Results

Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band (0.004–0.104 Hz) but higher amplitude in the high-frequency band (27.02–125 Hz) in the RT-FFF than the S-FFF states. The mean finger force was not significantly different between the two states. fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation (fALFF) in the S-FFF than in the RT-FFF state in the visual cortex, but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus, the superior frontal gyrus, and the default mode network.

Conclusion

The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention. The fMRI results suggest that a distributed network including visual, motor, attentional, and default mode networks may be involved in sustained attention and/or real-time feedback. This paradigm may be helpful for future studies on deficits of attention, such as attention deficit hyperactivity disorder and mild traumatic brain injury.

Keywords: biofeedback, amplitude, of, low-frequency, fluctuation, sustained, attention, fMRI

References

  • [1].Thompson M., Thompson L. The Neurofeedback Book: An intro duction to Basic Concepts in Applied Psychophysiology. Wheat Ridge, Co: Association for Applied Psychophysiology & Biofeedback; 2003. [Google Scholar]
  • [2].Yucha C.B., Montgomery D. Evidence-based practice in biofeedback and neurofeedback. Wheat Ridge, Co: Association for Applied Psychophysiology & Biofeedback; 2008. [Google Scholar]
  • [3].Kriz G., Hermsdorfer J., Marquardt C., Mai N. Feedback-based training of grip force control in patients with brain damage. Arch Phys Med Rehabil. 1995;76(7):653–659. doi: 10.1016/S0003-9993(95)80635-0. [DOI] [PubMed] [Google Scholar]
  • [4].Seo N.J., Fischer H.W., Bogey R.A., Rymer W.Z., Kamper D.G. Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: A pilot study. Arch Phys Med Rehabil. 2011;92(1):24–30. doi: 10.1016/j.apmr.2010.08.016. [DOI] [PubMed] [Google Scholar]
  • [5].Naik SK, Patten C, Lodha N, Coombes SA, Cauraugh JH. Force control deficits in chronic stroke: grip formation and release phases. Exp Brain Res 2011: 1–15. [DOI] [PubMed]
  • [6].Vaillancourt D.E., Slifkin A.B., Newell K.M. Visual control of isometric force in Parkinson’s disease. Neuropsychologia. 2001;39(13):1410–1418. doi: 10.1016/S0028-3932(01)00061-6. [DOI] [PubMed] [Google Scholar]
  • [7].de Oliveira M.A., Rodrigues A.M., da Silva Caballero R.M., de Souza Petersen R.D., Shim J.K. Strength and isometric torque control in individuals with Parkinson’s disease. Exp Brain Res. 2008;184(3):445–450. doi: 10.1007/s00221-007-1212-9. [DOI] [PubMed] [Google Scholar]
  • [8].Frankemolle A.M.M., Wu J., Noecker A.M., Voelcker-Rehage C., Ho J.C., Vitek J.L., et al. Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 2010;133(3):746. doi: 10.1093/brain/awp315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Ehrsson H.H., Fagergren E., Forssberg H. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol. 2001;85(6):2613–2623. doi: 10.1152/jn.2001.85.6.2613. [DOI] [PubMed] [Google Scholar]
  • [10].Ehrsson H.H., Fagergren A., Jonsson T., Westling G., Johansson R.S., Forssberg H. Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol. 2000;83(1):528–536. doi: 10.1152/jn.2000.83.1.528. [DOI] [PubMed] [Google Scholar]
  • [11].Kuhtz-Buschbeck J.P., Gilster R., Wolff S., Ulmer S., Siebner H., Jansen O. Brain activity is similar during precision and power gripping with light force: an fMRI study. Neuroimage. 2008;40(4):1469–1481. doi: 10.1016/j.neuroimage.2008.01.037. [DOI] [PubMed] [Google Scholar]
  • [12].Keisker B., Hepp-Reymond M.C., Blickenstorfer A., Kollias S.S. Differential representation of dynamic and static power grip force in the sensorimotor network. Eur J Neurosci. 2010;31(8):1483–1491. doi: 10.1111/j.1460-9568.2010.07172.x. [DOI] [PubMed] [Google Scholar]
  • [13].Sterr A., Shen S., Kranczioch C., Szameitat A.J., Hou W., Sorger B. fMRI effects of task demand and feedback accuracy on grip force tracking. Neurosci Lett. 2009;457(2):61–65. doi: 10.1016/j.neulet.2009.04.013. [DOI] [PubMed] [Google Scholar]
  • [14].Coombes S.A., Corcos D.M., Vaillancourt D.E. Spatiotemporal tuning of brain activity and force performance. Neuroimage. 2011;54(3):2226–2236. doi: 10.1016/j.neuroimage.2010.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Blank R., Heizer W., von Voss H. Externally guided control of static grip forces by visual feedback-age and task effects in 3–6-year old children and in adults. Neurosci Lett. 1999;271(1):41–44. doi: 10.1016/S0304-3940(99)00517-0. [DOI] [PubMed] [Google Scholar]
  • [16].Ward N., Frackowiak R. Age-related changes in the neural correlates of motor performance. Brain. 2003;126(4):873. doi: 10.1093/brain/awg071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Halder P., Sterr A., Brem S., Bucher K., Kollias S., Brandeis D. Electrophysiological evidence for cortical plasticity with movement repetition. Eur J Neurosci. 2005;21(8):2271–2277. doi: 10.1111/j.1460-9568.2005.04045.x. [DOI] [PubMed] [Google Scholar]
  • [18].Halder P., Brem S., Bucher K., Boujraf S., Summers P., Dietrich T., et al. Electrophysiological and hemodynamic evidence for late maturation of hand power grip and force control under visual feedback. Hum Brain Mapp. 2007;28(1):69–84. doi: 10.1002/hbm.20262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Kuhtz-Buschbeck J.P., Ehrsson H.H., Forssberg H. Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci. 2001;14(2):382–390. doi: 10.1046/j.0953-816x.2001.01639.x. [DOI] [PubMed] [Google Scholar]
  • [20].Haller S., Chapuis D., Gassert R., Burdet E., Klarhofer M. Supplementary motor area and anterior intraparietal area integrate finegraded timing and force control during precision grip. Eur J Neurosci. 2009;3012:2401–2406. doi: 10.1111/j.1460-9568.2009.07003.x. [DOI] [PubMed] [Google Scholar]
  • [21].Wasson P., Prodoehl J., Coombes S.A., Corcos D.M., Vaillancourt D.E. Predicting grip force amplitude involves circuits in the anterior basal ganglia. Neuroimage. 2010;49(4):3230–3238. doi: 10.1016/j.neuroimage.2009.11.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Grafton S.T., Tunik E. Human basal ganglia and the dynamic control of force during on-line corrections. J Neurosci. 2011;31(5):1600–1605. doi: 10.1523/JNEUROSCI.3301-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Coombes S.A., Corcos D.M., Sprute L., Vaillancourt D.E. Selective regions of the visuomotor system are related to gain-induced changes in force error. J Neurophysiol. 2010;103(4):2114–2123. doi: 10.1152/jn.00920.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Castellanos F.X., Sonuga-Barke E.J., Scheres A., Di Martino A., Hyde C., Walters J.R. Varieties of attention-deficit/hyperactivity disorderrelated intra-individual variability. Biol Psychiatry. 2005;57(11):1416–1423. doi: 10.1016/j.biopsych.2004.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Sonuga-Barke E.J.S., Castellanos F.X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31(7):977–986. doi: 10.1016/j.neubiorev.2007.02.005. [DOI] [PubMed] [Google Scholar]
  • [26].Di Martino A., Ghaffari M., Curchack J., Reiss P., Hyde C., Vannucci M., et al. Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;64(7):607–614. doi: 10.1016/j.biopsych.2008.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., De Boissezon X., et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011;31(38):13442–13451. doi: 10.1523/JNEUROSCI.1163-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541. doi: 10.1002/mrm.1910340409. [DOI] [PubMed] [Google Scholar]
  • [29].van Duinen H., Renken R., Maurits N., Zijdewind I. Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage. 2007;35(4):1438–1449. doi: 10.1016/j.neuroimage.2007.02.008. [DOI] [PubMed] [Google Scholar]
  • [30].Yan C.G., Zang Y.F. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13. doi: 10.3389/fnsys.2010.00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Song X.W., Dong Z.Y., Long X.Y., Li S.F., Zuo X.N., Zhu C.Z., et al. REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6(9):e25031. doi: 10.1371/journal.pone.0025031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018. [DOI] [PubMed] [Google Scholar]
  • [33].Zou Q.H., Zhu C.Z., Yang Y., Zuo X.N., Long X.Y., Cao Q.J., et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–141. doi: 10.1016/j.jneumeth.2008.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Biswal B.B., Mennes M., Zuo X.N., Gohel S., Kelly C., Smith S.M., et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A. 2010;107(10):4734–4739. doi: 10.1073/pnas.0911855107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Hoptman M.J., Zuo X.N., Butler P.D., Javitt D.C., D’Angelo D., Mauro C.J., et al. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res. 2010;117(1):13–20. doi: 10.1016/j.schres.2009.09.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Zuo X.N., Di Martino A., Kelly C., Shehzad Z.E., Gee D.G., Klein D.F., et al. The oscillating brain: complex and reliable. Neuroimage. 2010;49(2):1432–1445. doi: 10.1016/j.neuroimage.2009.09.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Han Y., Wang J., Zhao Z., Min B., Lu J., Li K., et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage. 2011;55(1):287–295. doi: 10.1016/j.neuroimage.2010.11.059. [DOI] [PubMed] [Google Scholar]
  • [38].Kunisato Y., Okamoto Y., Okada G., Aoyama S., Demoto Y., Munakata A., et al. Modulation of default-mode network activity by acute tryptophan depletion is associated with mood change: a resting state functional magnetic resonance imaging study. Neurosci Res. 2011;69(2):129–134. doi: 10.1016/j.neures.2010.11.005. [DOI] [PubMed] [Google Scholar]
  • [39].Zang Y.F., He Y., Zhu C.Z., Cao Q.J., Sui M.Q., Liang M., et al. Altered baseline brain activity in children with ADHD revealed by restingstate functional MRI. Brain Dev. 2007;29(2):83–91. doi: 10.1016/j.braindev.2006.07.002. [DOI] [PubMed] [Google Scholar]
  • [40].Castellanos F.X. Proceed, with caution: SPECT cerebral blood flow studies of children and adolescents with attention deficit hyperactivity disorder. J Nucl Med. 2002;43(12):1630–1633. [PubMed] [Google Scholar]
  • [41].Leopold D.A., Murayama Y., Logothetis N.K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex. 2003;13(4):422. doi: 10.1093/cercor/13.4.422. [DOI] [PubMed] [Google Scholar]
  • [42].Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–682. doi: 10.1073/pnas.98.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–258. doi: 10.1073/pnas.0135058100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22(7):1326–1333. [PMC free article] [PubMed] [Google Scholar]
  • [45].Bhattacharyya P.K., Lowe M.J. Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magn Reson Imaging. 2004;22(1):9–13. doi: 10.1016/j.mri.2003.08.003. [DOI] [PubMed] [Google Scholar]
  • [46].Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978. [DOI] [PubMed] [Google Scholar]
  • [47].Van Dijk K.R.A., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59(1):431–438. doi: 10.1016/j.neuroimage.2011.07.044. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES