Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Aug 7;28(4):449–455. doi: 10.1007/s12264-012-1255-1

Resting-state fMRI studies in epilepsy

Wurina 1, Yu-Feng Zang 2,, Shi-Gang Zhao 1,
PMCID: PMC5561896  PMID: 22833042

Abstract

Epilepsy is a disease characterized by abnormal spontaneous activity in the brain. Resting-state functional magnetic resonance imaging (RS-fMRI) is a powerful technique for exploring this activity. With good spatial and temporal resolution, RS-fMRI is a promising approach for accurate localization of the focus of seizure activity. Although simultaneous electroencephalogram-fMRI has been performed with patients in the resting state, most studies focused on activation. This mini-review focuses on RS-fMRI alone, including its computational methods and its application to epilepsy.

Keywords: resting-state fMRI, epilepsy, localization, network

Contributor Information

Yu-Feng Zang, Phone: +86-571-88285650, FAX: +86-571-88285651, Email: zangyf@gmail.com.

Shi-Gang Zhao, Phone: +86-471-6637648, FAX: +86-471-6965931, Email: shigang_zhao@126.com.

References

  • [1].Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia. 2008;49:S42–51. doi: 10.1111/j.1528-1167.2008.01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Noachtar S., Rémi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav. 2009;15:22–33. doi: 10.1016/j.yebeh.2009.02.035. [DOI] [PubMed] [Google Scholar]
  • [3].la Fougère C., Rominger A., Förster S., Geisler J., Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15:50–55. doi: 10.1016/j.yebeh.2009.02.025. [DOI] [PubMed] [Google Scholar]
  • [4].Rowe C.C., Berkovic S.F., Austin M.C., Saling M., Kalnins R.M., Mc-Kay W.J., et al. Visual and quantitative analysis of interictal SPECT with technetium-99m-HMPAO in temporal lobe epilepsy. J Nucl Med. 1991;32:1688–1694. [PubMed] [Google Scholar]
  • [5].Knowlton R.C., Laxer K.D., Aminoff M.J., Roberts T.P., Wong S.T., Rowley H.A. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol. 1997;42:622–631. doi: 10.1002/ana.410420413. [DOI] [PubMed] [Google Scholar]
  • [6].Yagyu K., Takeuchi F., Shiraishi H., Nakane S., Sueda K., Asahina N., et al. The applications of time-frequency analyses to ictal magnetoencephalography in neocortical epilepsy. Epilepsy Res. 2010;90:199–206. doi: 10.1016/j.eplepsyres.2010.05.001. [DOI] [PubMed] [Google Scholar]
  • [7].Biswal B.B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn Reson Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409. [DOI] [PubMed] [Google Scholar]
  • [8].Wolf R.L., Alsop D.C., Levy-Reis I., Meyer P.T., Maldjian J.A., Gonzalez-Atavales J., et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol. 2001;22:1334–1341. [PMC free article] [PubMed] [Google Scholar]
  • [9].Chuang K.H., van Gelderen P., Merkle H., Bodurka J., Ikonomidou V.N., Koretsky A.P., et al. Mapping resting-state functional connectivity using perfusion MRI. Neuroimage. 2008;40:1595–1605. doi: 10.1016/j.neuroimage.2008.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Zou Q., Wu C.W., Stein E.A., Zang Y., Yang Y. Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage. 2009;48:515–524. doi: 10.1016/j.neuroimage.2009.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Lowe M.J., Mock B.J., Sorenson J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7:119–132. doi: 10.1006/nimg.1997.0315. [DOI] [PubMed] [Google Scholar]
  • [12].Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22:1326–1333. [PMC free article] [PubMed] [Google Scholar]
  • [13].Fox M.D., Corbetta M., Snyder A.Z., Vincent J.L., Raichle M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006;103:10046–10051. doi: 10.1073/pnas.0604187103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Hampson M., Peterson B.S., Skudlarski P., Gatenby J.C., Gore J.C. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002;15:247–262. doi: 10.1002/hbm.10022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Koyama M.S., Kelly C., Shehzad Z., Penesetti D., Castellanos F.X., Milham M.P. Reading networks at rest. Cereb Cortex. 2010;20:2549–2559. doi: 10.1093/cercor/bhq005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Vincent J.L., Snyder A.Z., Fox M.D., Shannon B.J., Andrews J.R., Raichle M.E., et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006;96:3517–3531. doi: 10.1152/jn.00048.2006. [DOI] [PubMed] [Google Scholar]
  • [17].Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253–258. doi: 10.1073/pnas.0135058100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–9678. doi: 10.1073/pnas.0504136102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Wu Q.Z., Li D.M., Kuang W.H., Zhang T.J., Lui S., Huang X.Q., et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2011;32:1290–1299. doi: 10.1002/hbm.21108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Rombouts S.A., Barkhof F., Goekoop R., Stam C.J., Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26:231–239. doi: 10.1002/hbm.20160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport. 2006;17:1033–1036. doi: 10.1097/01.wnr.0000224769.92454.5d. [DOI] [PubMed] [Google Scholar]
  • [22].Waites A.B., Briellmann R.S., Saling M.M., Abbott D.F., Jackson G.D. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59:335–343. doi: 10.1002/ana.20733. [DOI] [PubMed] [Google Scholar]
  • [23].Gotman J., Kobayashi E., Bagshaw A.P., Bénar C.G., Dubeau F. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006;23:906–920. doi: 10.1002/jmri.20577. [DOI] [PubMed] [Google Scholar]
  • [24].Lazeyras F., Blanke O., Perrig S., Zimine I., Golay X., Delavelle J., et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging. 2000;12:177–185. doi: 10.1002/1522-2586(200007)12:1<177::AID-JMRI20>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • [25].Archer J.S., Abbott D.F., Waites A.B., Jackson G.D. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage. 2003;20:1915–1922. doi: 10.1016/S1053-8119(03)00294-5. [DOI] [PubMed] [Google Scholar]
  • [26].Aghakhani Y., Bagshaw A.P., Bénar C.G., Hawco C., Andermann F., Dubeau F., et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127:1127–1144. doi: 10.1093/brain/awh136. [DOI] [PubMed] [Google Scholar]
  • [27].Lopes R., Lina J.M., Fahoum F., Gotman J. Detection of epileptic activity in fMRI without recording the EEG. Neuroimage. 2012;60:1867–1879. doi: 10.1016/j.neuroimage.2011.12.083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Liu Y., Gao J.H., Liu H.L., Fox P.T. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405:1058–1062. doi: 10.1038/35016590. [DOI] [PubMed] [Google Scholar]
  • [29].Morgan V.L., Price R.R., Arain A., Modur P., Abou-Khalil B. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage. 2004;21:473–481. doi: 10.1016/j.neuroimage.2003.08.031. [DOI] [PubMed] [Google Scholar]
  • [30].Morgan V.L., Gore J.C., Abou-Khalil B. Cluster analysis detection of functional MRI activity in temporal lobe epilepsy. Epilepsy Res. 2007;76:22–33. doi: 10.1016/j.eplepsyres.2007.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Morgan V.L., Li Y., Abou-Khalil B., Gore J.C. Development of 2dTCA for the detection of irregular, transient BOLD activity. Hum Brain Mapp. 2008;29:57–69. doi: 10.1002/hbm.20362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Khatamian YB, Fahoum F, Gotman J. Limits of 2D-TCA in detecting BOLD responses to epileptic activity. Epilepsy Res 2012, in press. [DOI] [PMC free article] [PubMed]
  • [33].Zang Y., Jiang T., Lu Y., He Y., Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. doi: 10.1016/j.neuroimage.2003.12.030. [DOI] [PubMed] [Google Scholar]
  • [34].Yao Z., Wang L., Lu Q., Liu H., Teng G. Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fMRI study. J Affect Disord. 2009;115:430–438. doi: 10.1016/j.jad.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • [35].Wu T., Long X., Zang Y., Wang L., Hallett M., Li K., et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp. 2009;30:1502–1510. doi: 10.1002/hbm.20622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].He Y., Wang L., Zang Y., Tian L., Zhang X., Li K., et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage. 2007;35:488–500. doi: 10.1016/j.neuroimage.2006.11.042. [DOI] [PubMed] [Google Scholar]
  • [37].Paakki J.J., Rahko J., Long X., Moilanen I., Tervonen O., Nikkinen J., et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–179. doi: 10.1016/j.brainres.2009.12.081. [DOI] [PubMed] [Google Scholar]
  • [38].Shukla D.K., Keehn B., Müller R.A. Regional homogeneity of fMRI time series in autism spectrum disorders. Neurosci Lett. 2010;476:46–51. doi: 10.1016/j.neulet.2010.03.080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Mankinen K., Long X.Y., Paakki J.J., Harila M., Rytky S., Tervonen O., et al. Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy. Brain Res. 2011;1373:221–229. doi: 10.1016/j.brainres.2010.12.004. [DOI] [PubMed] [Google Scholar]
  • [40].Zhong Y., Lu G., Zhang Z., Jiao Q., Li K., Liu Y. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res. 2011;97:83–91. doi: 10.1016/j.eplepsyres.2011.07.007. [DOI] [PubMed] [Google Scholar]
  • [41].Zang Y.F., He Y., Zhu C.Z., Cao Q.J., Sui M.Q., Liang M., et al. Altered baseline brain activity in children with ADHD revealed by restingstate functional MRI. Brain Dev. 2007;29:83–91. doi: 10.1016/j.braindev.2006.10.001. [DOI] [PubMed] [Google Scholar]
  • [42].Yang H., Long X.Y., Yang Y., Yan H., Zhu C.Z., Zhou X.P., et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage. 2007;36:144–152. doi: 10.1016/j.neuroimage.2007.01.054. [DOI] [PubMed] [Google Scholar]
  • [43].Yan C., Liu D., He Y., Zou Q., Zhu C., Zuo X., et al. Spontaneous brain activity in the default mode network is sensitive to different restingstate conditions with limited cognitive load. PLoS One. 2009;4:e5743. doi: 10.1371/journal.pone.0005743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Mennes M., Zuo X.N., Kelly C., Di Martino A., Zang Y.F., Biswal B., et al. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. Neuroimage. 2011;54:2950–2959. doi: 10.1016/j.neuroimage.2010.10.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Lui S., Huang X., Chen L., Tang H., Zhang T., Li X., et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proc Natl Acad Sci U S A. 2009;106:15412–15417. doi: 10.1073/pnas.0812751106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Han Y., Wang J., Zhao Z., Min B., Lu J., Li K., et al. Frequencydependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage. 2011;55:287–295. doi: 10.1016/j.neuroimage.2010.11.059. [DOI] [PubMed] [Google Scholar]
  • [47].Hoptman M.J., Zuo X.N., Butler P.D., Javitt D.C., D’Angelo D., Mauro C.J., et al. Amplitude of low-frequency oscillations in schizophrenia: A resting state fMRI study. Schizophr Res. 2010;117:13–20. doi: 10.1016/j.schres.2009.09.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Lui S., Li T., Deng W., Jiang L., Wu Q., Tang H., et al. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry. 2010;67:783–792. doi: 10.1001/archgenpsychiatry.2010.84. [DOI] [PubMed] [Google Scholar]
  • [49].Zhang Z., Lu G., Zhong Y., Tan Q., Chen H., Liao W., et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp. 2010;31:1851–1861. doi: 10.1002/hbm.20982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Bettus G., Guedj E., Joyeux F., Confort-Gouny S., Soulier E., Laguitton V., et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2008;30:1580–1591. doi: 10.1002/hbm.20625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Pereira F.R., Alessio A., Sercheli M.S., Pedro T., Bilevicius E., Rondina J.M., et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 2010;11:66. doi: 10.1186/1471-2202-11-66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Negishi M., Martuzzi R., Novotny E.J., Spencer D.D., Constable R.T. Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia. 2011;52:1733–1740. doi: 10.1111/j.1528-1167.2011.03191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Zhang Z., Lu G., Zhong Y., Tan Q., Yang Z., Liao W., et al. Impaired attention network in temporal lobe epilepsy: a resting fMRI study. Neurosci Lett. 2009;458:97–101. doi: 10.1016/j.neulet.2009.04.040. [DOI] [PubMed] [Google Scholar]
  • [54].Zhang Z., Lu G., Zhong Y., Tan Q., Liao W., Chen Z., et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol. 2009;256:1705–1713. doi: 10.1007/s00415-009-5187-2. [DOI] [PubMed] [Google Scholar]
  • [55].Liao W., Zhang Z., Pan Z., Mantini D., Ding J., Duan X., et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp. 2011;32:883–895. doi: 10.1002/hbm.21076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].McGill M.L., Devinsky O., Kelly C., Milham M., Castellanos F.X., Quinn B.T., et al. Default mode network abnormalities in idiopathic generalized epilepsy. Epilepsy Behav. 2012;23:353–359. doi: 10.1016/j.yebeh.2012.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Masterton R.A., Carney P.W., Jackson G.D. Cortical and thalamic resting-state functional connectivity is altered in childhood absence epilepsy. Epilepsy Res. 2012;99:327–334. doi: 10.1016/j.eplepsyres.2011.12.014. [DOI] [PubMed] [Google Scholar]
  • [58].Moeller F., Maneshi M., Pittau F., Gholipour T., Bellec P., Dubeau F., et al. Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia. 2011;52:515–522. doi: 10.1111/j.1528-1167.2010.02938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Kang J., Wang L., Yan C., Wang J., Liang X., He Y. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Neuroimage. 2011;56:1222–1234. doi: 10.1016/j.neuroimage.2011.03.033. [DOI] [PubMed] [Google Scholar]
  • [60].Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist 2012. [Epub ahead of print] [DOI] [PMC free article] [PubMed]
  • [61].Liao W., Zhang Z., Pan Z., Mantini D., Ding J., Duan X., et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One. 2010;5:e8525. doi: 10.1371/journal.pone.0008525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62].Zhang Z., Liao W., Chen H., Mantini D., Ding J.R., Xu Q., et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain. 2011;134:2912–2928. doi: 10.1093/brain/awr223. [DOI] [PubMed] [Google Scholar]
  • [63].Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005;25:230–242. doi: 10.1016/j.neuroimage.2004.11.017. [DOI] [PubMed] [Google Scholar]
  • [64].David O., Guillemain I., Saillet S., Reyt S., Deransart C., Segebarth C., et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 2008;6:e315. doi: 10.1371/journal.pbio.0060315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Zang Z.X., Yan C.G., Dong Z.Y., Huang J., Zang Y.F. Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. J Neurosci Methods. 2012;203:418–426. doi: 10.1016/j.jneumeth.2011.10.006. [DOI] [PubMed] [Google Scholar]
  • [66].Morgan V.L., Rogers B.P., Sonmezturk H.H., Gore J.C., Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia. 2011;52:1741–1749. doi: 10.1111/j.1528-1167.2011.03196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Windischberger C., Cunnington R., Lamm C., Lanzenberger R., Langenberger H., Deecke L., et al. Time-resolved analysis of fMRI signal changes using brain activation movies. J Neurosci Methods. 2008;169:222–230. doi: 10.1016/j.jneumeth.2007.11.033. [DOI] [PubMed] [Google Scholar]
  • [68].LeVan P., Tyvaert L., Moeller F., Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage. 2010;49:366–378. doi: 10.1016/j.neuroimage.2009.07.064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Zhang Z., Lu G., Zhong Y., Tan Q., Liao W., Wang Z., et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res. 2010;1323:152–160. doi: 10.1016/j.brainres.2010.01.042. [DOI] [PubMed] [Google Scholar]
  • [70].Luo C., Qiu C., Guo Z., Fang J., Li Q., Lei X., et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One. 2011;7:e28196. doi: 10.1371/journal.pone.0028196. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES