Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 13;28(5):483–492. doi: 10.1007/s12264-012-1257-z

Endophilin isoforms have distinct characteristics in interactions with N-type Ca2+ channels and dynamin I

Qi Tian 1, Ji-Feng Zhang 1, Jinjin Fan 2, Zhihong Song 3, Yuan Chen 1,
PMCID: PMC5561909  PMID: 22961472

Abstract

Objective

Formation of the endophilin II-Ca2+ channel complex is Ca2+-dependent in clathrin-mediated endocytosis. However, little is known about whether the other two endophilin isoforms have the same features. The present study aimed to investigate the characteristics of the interactions of all three isoforms with Ca2+ channels and dynamin I.

Methods

N-type Ca2+ channel C-terminal fragments (NCFs) synthesized with a 3H-leucine-labeled kit, were incubated with endophilin-GST fusion proteins, followed by pull-down assay. Results were counted on a scintillation counter. In addition, the different endophilin isoforms were each co-transfected with dynamin I into 293T cells, followed by flow cytometry and co-immunoprecipitation assay. Immunostaining was performed and an image analysis program was used to evaluate the overlap coefficient of cells expressing endophilin and dynamin I.

Results

All three isoforms interacted with NCF. Endophilins I and II demonstrated clear Ca2+-dependent interactions with NCF, whereas endophilin III did not. Co-immunoprecipitation showed that, compared to endophilin I/II, the interaction between endophilin III and dynamin I was significantly increased. Similar results were obtained from flow cytometry. Furthermore, endophilin III had a higher overlap coefficient with dynamin I in co-transfected 293T cells.

Conclusion

Endophilin isoforms have distinct characteristics in interactions with NCF and dynamin I. Endophilin III binding to NCF is Ca2+-independent, implying that it plays a different role in clathrin-mediated endocytosis.

Keywords: endophilin, Ca2+, dynamin I, endocytosis, proline-rich domain, SH3 domain

References

  • [1].Giachino C., Lantelme E., Lanzetti L., Saccone S., Bella Valle G., Migone N. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics. 1997;41:427–434. doi: 10.1006/geno.1997.4645. [DOI] [PubMed] [Google Scholar]
  • [2].Ringstad N., Nemoto Y., De Camilli P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A. 1997;94:8569–8574. doi: 10.1073/pnas.94.16.8569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Reutens A.T., Begley C.G. Endophilin-1: a multifunctional protein. Int J Biochem Cell Biol. 2002;34:1173–1177. doi: 10.1016/S1357-2725(02)00063-8. [DOI] [PubMed] [Google Scholar]
  • [4].Gortat A., Jouve San-Roman M., Vannier C., Schmidt A.A. Single point mutation in the bin/amphiphysin/RVS (BAR) sequence of endophilin impairs dimerization, membrane shaping, and SRC homology 3 domain-mediated partnership. J Biol Chem. 2012;287(6):4232–4247. doi: 10.1074/jbc.M111.325837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Pawson T. Protein modules and signalling networks. Nature. 1995;373:573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  • [6].Ringstad N., Nemoto Y., De Camilli P. Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J Biol Chem. 2001;276:40424–40430. doi: 10.1074/jbc.M106338200. [DOI] [PubMed] [Google Scholar]
  • [7].Ross J.A., Chen Y., Muller J., Barylko B., Wang L., Banks H.B., et al. Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys J. 2011;100:729–737. doi: 10.1016/j.bpj.2010.12.3717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Simpson F., Hussain N.K., Qualmann B., Kelly R.B., Kay B.K., McPherson P.S., et al. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol. 1999;1:119–124. doi: 10.1038/10091. [DOI] [PubMed] [Google Scholar]
  • [9].Rikhy R., Kumar V., Mittal R., Krishnan K.S. Endophilin is critically required for synapse formation and function in Drosophila melanogaster. J Neurosci. 2002;22:7478–7484. doi: 10.1523/JNEUROSCI.22-17-07478.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Schuske K.R., Richmond J.E., Matthies D.S., Davis W.S., Runz S., Rube D.A., et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron. 2003;40:749–762. doi: 10.1016/S0896-6273(03)00667-6. [DOI] [PubMed] [Google Scholar]
  • [11].Hughes A.C., Errington R., Fricker-Gates R., Jones L. Endophilin A3 forms filamentous structures that colocalise with microtubules but not with actin filaments. Brain Res Mol Brain Res. 2004;128:182–192. doi: 10.1016/j.molbrainres.2004.06.016. [DOI] [PubMed] [Google Scholar]
  • [12].Ringstad N., Gad H., Low P., Di Paolo G., Brodin L., Shupliakov O., et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron. 1999;24:143–154. doi: 10.1016/S0896-6273(00)80828-4. [DOI] [PubMed] [Google Scholar]
  • [13].Guichet A., Wucherpfennig T., Dudu V., Etter S., Wilsch-Brauniger M., Hellwig A., et al. Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J. 2002;21:1661–1672. doi: 10.1093/emboj/21.7.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Mizuno N., Jao C.C., Langen R., Steven A.C. Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis. J Biol Chem. 2010;285:23351–23358. doi: 10.1074/jbc.M110.143776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Gad H., Ringstad N., Low P., Kjaerulff O., Gustafsson J., Wenk M., et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron. 2000;27:301–312. doi: 10.1016/S0896-6273(00)00038-6. [DOI] [PubMed] [Google Scholar]
  • [16].Verstreken P., Kjaerulff O., Lloyd T.E., Atkinson R., Zhou Y., Meinertzhagen I.A., et al. Endophilin mutations block clathrinmediated endocytosis but not neurotransmitter release. Cell. 2002;109:101–112. doi: 10.1016/S0092-8674(02)00688-8. [DOI] [PubMed] [Google Scholar]
  • [17].Micheva K.D., Kay B.K., McPherson P.S. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J Biol Chem. 1997;272:27239–27245. doi: 10.1074/jbc.272.43.27239. [DOI] [PubMed] [Google Scholar]
  • [18].Anggono V., Robinson P.J. Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis. J Neurochem. 2007;102:931–943. doi: 10.1111/j.1471-4159.2007.04574.x. [DOI] [PubMed] [Google Scholar]
  • [19].Verstreken P., Koh T.W., Schulze K.L., Zhai R.G., Hiesinger P.R., Zhou Y., et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron. 2003;40:733–748. doi: 10.1016/S0896-6273(03)00644-5. [DOI] [PubMed] [Google Scholar]
  • [20].Sundborger A., Soderblom C., Vorontsova O., Evergren E., Hinshaw J.E., Shupliakov O. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J Cell Sci. 2011;124:133–143. doi: 10.1242/jcs.072686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Lee S.Y., Wenk M.R., Kim Y., Nairn A.C., De Camilli P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci U S A. 2004;101:546–551. doi: 10.1073/pnas.0307813100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].McPherson P.S., Garcia E.P., Slepnev V.I., David C., Zhang X., Grabs D., et al. A presynaptic inositol-5-phosphatase. Nature. 1996;379:353–357. doi: 10.1038/379353a0. [DOI] [PubMed] [Google Scholar]
  • [23].Chen Y., Deng L., Maeno-Hikichi Y., Lai M., Chang S., Chen G., et al. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell. 2003;115:37–48. doi: 10.1016/S0092-8674(03)00726-8. [DOI] [PubMed] [Google Scholar]
  • [24].Adler J., Parmryd I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A. 2010;77:733–742. doi: 10.1002/cyto.a.20896. [DOI] [PubMed] [Google Scholar]
  • [25].Zinchuk V., Wu Y., Grossenbacher-Zinchuk O., Stefani E. Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations. Nat Protoc. 2011;6:1554–1567. doi: 10.1038/nprot.2011.384. [DOI] [PubMed] [Google Scholar]
  • [26].Chen-Hwang M.C., Chen H.R., Elzinga M., Hwang Y.W. Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. J Biol Chem. 2002;277:17597–17604. doi: 10.1074/jbc.M111101200. [DOI] [PubMed] [Google Scholar]
  • [27].Yoshida Y., Kinuta M., Abe T., Liang S., Araki K., Cremona O., et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J. 2004;23:3483–3491. doi: 10.1038/sj.emboj.7600355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Hill E., van Der Kaay J., Downes C.P., Smythe E. The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol. 2001;152:309–323. doi: 10.1083/jcb.152.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Szaszak M., Gaborik Z., Turu G., McPherson P.S., Clark A.J., Catt K.J., et al. Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem. 2002;277:21650–21656. doi: 10.1074/jbc.M200778200. [DOI] [PubMed] [Google Scholar]
  • [30].Aulestia F.J., Redondo P.C., Rodriguez-Garcia A. Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochem J. 2011;435:227–235. doi: 10.1042/BJ20101427. [DOI] [PubMed] [Google Scholar]
  • [31].Weissenhorn W. Crystal structure of the endophilin-A1 BAR domain. J Mol Biol. 2005;351:653–661. doi: 10.1016/j.jmb.2005.06.013. [DOI] [PubMed] [Google Scholar]
  • [32].Chowdhury S. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 2006;52:445–459. doi: 10.1016/j.neuron.2006.08.033. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES