Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Aug 30;28(5):541–549. doi: 10.1007/s12264-012-1261-3

Altered regional homogeneity in post-traumatic stress disorder: a restingstate functional magnetic resonance imaging study

Yan Yin 1,2, Changfeng Jin 1, Lisa T Eyler 4,5, Hua Jin 4,6, Xiaolei Hu 1,7, Lian Duan 1, Huirong Zheng 8, Bo Feng 9, Xuanyin Huang 10, Baoci Shan 11, Qiyong Gong 12, Lingjiang Li 1,3,
PMCID: PMC5561913  PMID: 22961475

Abstract

Objective

Little is known about the brain systems that contribute to vulnerability to post-traumatic stress disorder (PTSD). Comparison of the resting-state patterns of intrinsic functional synchronization, as measured by functional magnetic resonance imaging (fMRI), between groups with and without PTSD following a traumatic event can help identify the neural mechanisms of the disorder and targets for intervention.

Methods

Fifty-four PTSD patients and 72 matched traumatized subjects who experienced the 2008 Sichuan earthquake were imaged with blood oxygen level-dependent (BOLD) fMRI and analyzed using the measure of regional homogeneity (ReHo) during the resting state.

Results

PTSD patients presented enhanced ReHo in the left inferior parietal lobule and right superior frontal gyrus, and reduced ReHo in the right middle temporal gyrus and lingual gyrus, relative to traumatized individuals without PTSD.

Conclusion

Our findings showed that abnormal brain activity exists under resting conditions in PTSD patients who had been exposed to a major earthquake. Alterations in the local functional connectivity of cortical regions are likely to contribute to the neural mechanisms underlying PTSD.

Keywords: functional magnetic resonance imaging, post-traumatic stress disorder, regional homogeneity, resting-state

Footnotes

An erratum to this article can be found at http://dx.doi.org/10.1007/s12264-012-1293-8.

References

  • [1].Yehuda R. Post-traumatic stress disorder. N Engl J Med. 2002;346:108–114. doi: 10.1056/NEJMra012941. [DOI] [PubMed] [Google Scholar]
  • [2].Boehnlein J.K. The process of research in posttraumatic stress disorder. Perspect Biol Med. 1989;32:455–465. doi: 10.1353/pbm.1989.0032. [DOI] [PubMed] [Google Scholar]
  • [3].Paige S.R., Reid G.M., Allen M.G., Newton J.E. Psychophysiological correlates of posttraumatic stress disorder in Vietnam veterans. Biol Psychiatry. 1990;27:419–430. doi: 10.1016/0006-3223(90)90552-D. [DOI] [PubMed] [Google Scholar]
  • [4].Bremner J.D., Southwick S., Brett E., Fontana A., Rosenheck R., Charney D.S. Dissociation and posttraumatic stress disorder in Vietnam combat veterans. Am J Psychiatry. 1992;149:328–332. doi: 10.1176/ajp.149.3.328. [DOI] [PubMed] [Google Scholar]
  • [5].Raichle M.E., Mintun M.A. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–476. doi: 10.1146/annurev.neuro.29.051605.112819. [DOI] [PubMed] [Google Scholar]
  • [6].Bluhm R.L., Williamson P.C., Osuch E.A., Frewen P.A., Stevens T.K., Boksman K., et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci. 2009;34:187–194. [PMC free article] [PubMed] [Google Scholar]
  • [7].Lanius R.A., Bluhm R.L., Coupland N.J., Hegadoren K.M., Rowe B., Theberge J., et al. Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand. 2010;121:33–40. doi: 10.1111/j.1600-0447.2009.01391.x. [DOI] [PubMed] [Google Scholar]
  • [8].Zang Y., Jiang T., Lu Y., He Y., Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. doi: 10.1016/j.neuroimage.2003.12.030. [DOI] [PubMed] [Google Scholar]
  • [9].Kendall M., Gibbons J.D. Rank Correlation Methods. Oxford: Oxford University Press; 1990. [Google Scholar]
  • [10].Liu Z., Xu C., Xu Y., Wang Y., Zhao B., Lv Y., et al. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res. 2010;182:211–215. doi: 10.1016/j.pscychresns.2010.03.004. [DOI] [PubMed] [Google Scholar]
  • [11].Yao Z., Wang L., Lu Q., Liu H., Teng G. Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord. 2009;115:430–438. doi: 10.1016/j.jad.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • [12].Liu H., Liu Z., Liang M., Hao Y., Tan L., Kuang F., et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport. 2006;17:19–22. doi: 10.1097/01.wnr.0000195666.22714.35. [DOI] [PubMed] [Google Scholar]
  • [13].Shi F., Liu Y., Jiang T., Zhou Y., Zhu W., Jiang J., et al. Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv. 2007;10:136–143. doi: 10.1007/978-3-540-75759-7_17. [DOI] [PubMed] [Google Scholar]
  • [14].Yang T., Cheng Y., Li H., Jiang H., Luo C., Shan B., et al. Abnormal regional homogeneity of drug-naive obsessive-compulsive patients. Neuroreport. 2010;21:786–790. doi: 10.1097/WNR.0b013e32833cadf0. [DOI] [PubMed] [Google Scholar]
  • [15].Paakki J.J., Rahko J., Long X., Moilanen I., Tervonen O., Nikkinen J., et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–179. doi: 10.1016/j.brainres.2009.12.081. [DOI] [PubMed] [Google Scholar]
  • [16].Shukla D.K., Keehn B., Muller R.A. Regional homogeneity of fMRI time series in autism spectrum disorders. Neurosci Lett. 2010;476:46–51. doi: 10.1016/j.neulet.2010.03.080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Liu Y., Wang K., Yu C., He Y., Zhou Y., Liang M., et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia. 2008;46:1648–1656. doi: 10.1016/j.neuropsychologia.2008.01.027. [DOI] [PubMed] [Google Scholar]
  • [18].Zhu C.Z., Zang Y.F., Cao Q.J., Yan C.G., He Y., Jiang T.Z., et al. Fisher discriminative analysis of resting-state brain function for attentiondeficit/hyperactivity disorder. Neuroimage. 2008;40:110–120. doi: 10.1016/j.neuroimage.2007.11.029. [DOI] [PubMed] [Google Scholar]
  • [19].Wu T., Long X., Zang Y., Wang L., Hallett M., Li K., et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp. 2009;30:1502–1510. doi: 10.1002/hbm.20622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Yin Y., Li L., Jin C., Hu X., Duan L., Eyler L.T., et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett. 2011;498:185–189. doi: 10.1016/j.neulet.2011.02.069. [DOI] [PubMed] [Google Scholar]
  • [21].Weathers F.W., Litz B.T., Huska J.A., Keane T.M. PTSD Checklist-Civilian Version. Boston: National Center for PTSD; 1994. [Google Scholar]
  • [22].Blake D.D., Weathers F.W., Nagy L.M., Kaloupek D.G., Gusman F.D., Charney D.S., et al. The development of a Clinician-Administered PTSD Scale. J Trauma Stress. 1995;8:75–90. doi: 10.1002/jts.2490080106. [DOI] [PubMed] [Google Scholar]
  • [23].First M.B., Spitzer R.L., Gibbon M., Williams J.B.W. Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0) New York: Biometric Research, New York State Psychiatric Institute; 1995. [Google Scholar]
  • [24].Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409. [DOI] [PubMed] [Google Scholar]
  • [25].Van Dijk K.R., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59:431–438. doi: 10.1016/j.neuroimage.2011.07.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Smith S.M. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–155. doi: 10.1002/hbm.10062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Bonne O., Gilboa A., Louzoun Y., Brandes D., Yona I., Lester H., et al. Resting regional cerebral perfusion in recent posttraumatic stress disorder. Biol Psychiatry. 2003;54:1077–1086. doi: 10.1016/S0006-3223(03)00525-0. [DOI] [PubMed] [Google Scholar]
  • [28].Bremner J.D., Staib L.H., Kaloupek D., Southwick S.M., Soufer R., Charney D.S. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol Psychiatry. 1999;45:806–816. doi: 10.1016/S0006-3223(98)00297-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Bremner J.D., Vermetten E., Vythilingam M., Afzal N., Schmahl C., Elzinga B., et al. Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder. Biol Psychiatry. 2004;55:612–620. doi: 10.1016/j.biopsych.2003.10.001. [DOI] [PubMed] [Google Scholar]
  • [30].Petersen S.E., Fox P.T., Posner M.I., Mintun M., Raichle M.E. Positron emission tomographic studies of the cortical anatomy of singleword processing. Nature. 1988;331:585–589. doi: 10.1038/331585a0. [DOI] [PubMed] [Google Scholar]
  • [31].Posner M.I., Petersen S.E., Fox P.T., Raichle M.E. Localization of cognitive operations in the human brain. Science. 1988;240:1627–1631. doi: 10.1126/science.3289116. [DOI] [PubMed] [Google Scholar]
  • [32].Pardo J.V., Fox P.T., Raichle M.E. Localization of a human system for sustained attention by positron emission tomography. Nature. 1991;349:61–64. doi: 10.1038/349061a0. [DOI] [PubMed] [Google Scholar]
  • [33].Jonides J., Smith E.E., Koeppe R.A., Awh E., Minoshima S., Mintun M.A. Spatial working memory in humans as revealed by PET. Nature. 1993;363:623–625. doi: 10.1038/363623a0. [DOI] [PubMed] [Google Scholar]
  • [34].Bremner J.D., Narayan M., Staib L.H., Southwick S.M., McGlashan T., Charney D.S. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry. 1999;156:1787–1795. doi: 10.1176/ajp.156.11.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Southwick S.M., Morgan C.A., 3rd, Nicolaou A.L., Charney D.S. Consistency of memory for combat-related traumatic events in veterans of Operation Desert Storm. Am J Psychiatry. 1997;154:173–177. doi: 10.1176/ajp.154.2.173. [DOI] [PubMed] [Google Scholar]
  • [36].Bremner J.D., Krystal J.H., Southwick S.M., Charney D.S. Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress. 1995;8:527–553. doi: 10.1002/jts.2490080403. [DOI] [PubMed] [Google Scholar]
  • [37].Jatzko A., Schmitt A., Demirakca T., Weimer E., Braus D.F. Disturbance in the neural circuitry underlying positive emotional processing in post-traumatic stress disorder (PTSD). An fMRI study. Eur Arch Psychiatry Clin Neurosci. 2006;256:112–114. doi: 10.1007/s00406-005-0617-3. [DOI] [PubMed] [Google Scholar]
  • [38].Selemon L.D., Goldman-Rakic P.S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci. 1988;8:4049–4068. doi: 10.1523/JNEUROSCI.08-11-04049.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Davidson R.J., Ekman P., Saron C.D., Senulis J.A., Friesen W.V. Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J Pers Soc Psychol. 1990;58:330–341. doi: 10.1037/0022-3514.58.2.330. [DOI] [PubMed] [Google Scholar]
  • [40].Davidson R.J. Affective style and affective disorders: Perspectives from affective neuroscience. Cogn Emot. 1998;12:307–330. doi: 10.1080/026999398379628. [DOI] [Google Scholar]
  • [41].Lee G.P., Meador K.J., Loring D.W., Allison J.D., Brown W.S., Paul L.K., et al. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol. 2004;17:9–17. doi: 10.1097/00146965-200403000-00002. [DOI] [PubMed] [Google Scholar]
  • [42].Stein M.B., Goldin P.R., Sareen J., Zorrilla L.T., Brown G.G. Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch Gen Psychiatry. 2002;59:1027–1034. doi: 10.1001/archpsyc.59.11.1027. [DOI] [PubMed] [Google Scholar]
  • [43].Veltmeyer M.D., McFarlane A.C., Bryant R.A., Mayo T., Gordon E., Clark C.R. Integrative assessment of brain function in PTSD: brain stability and working memory. J Integr Neurosci. 2006;5:123–138. doi: 10.1142/S0219635206001057. [DOI] [PubMed] [Google Scholar]
  • [44].Lucey J.V., Costa D.C., Adshead G., Deahl M., Busatto G., Gacinovic S., et al. Brain blood flow in anxiety disorders. OCD, panic disorder with agoraphobia, and post-traumatic stress disorder on 99mTcHMPAO single photon emission tomography (SPET) Br J Psychiatry. 1997;171:346–350. doi: 10.1192/bjp.171.4.346. [DOI] [PubMed] [Google Scholar]
  • [45].Pagani M., Hogberg G., Salmaso D., Tarnell B., Sanchez-Crespo A., Soares J., et al. Regional cerebral blood flow during auditory recall in 47 subjects exposed to assaultive and non-assaultive trauma and developing or not posttraumatic stress disorder. Eur Arch Psychiatry Clin Neurosci. 2005;255:359–365. doi: 10.1007/s00406-005-0559-9. [DOI] [PubMed] [Google Scholar]
  • [46].Hirono N., Mori E., Ishii K., Ikejiri Y., Imamura T., Shimomura T., et al. Frontal lobe hypometabolism and depression in Alzheimer’s disease. Neurology. 1998;50:380–383. doi: 10.1212/WNL.50.2.380. [DOI] [PubMed] [Google Scholar]
  • [47].Oquendo M.A., Placidi G.P., Malone K.M., Campbell C., Keilp J., Brodsky B., et al. Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry. 2003;60:14–22. doi: 10.1001/archpsyc.60.1.14. [DOI] [PubMed] [Google Scholar]
  • [48].Taylor W.D., MacFall J.R., Payne M.E., McQuoid D.R., Provenzale J.M., Steffens D.C., et al. Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry. 2004;161:1293–1296. doi: 10.1176/appi.ajp.161.7.1293. [DOI] [PubMed] [Google Scholar]
  • [49].Rauch S.L., van der Kolk B.A., Fisler R.E., Alpert N.M., Orr S.P., Savage C.R., et al. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry. 1996;53:380–387. doi: 10.1001/archpsyc.1996.01830050014003. [DOI] [PubMed] [Google Scholar]
  • [50].Bremner J.D., Innis R.B., Ng C.K., Staib L.H., Salomon R.M., Bronen R.A., et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54:246–254. doi: 10.1001/archpsyc.1997.01830150070011. [DOI] [PubMed] [Google Scholar]
  • [51].Shin L.M., Kosslyn S.M., McNally R.J., Alpert N.M., Thompson W.L., Rauch S.L., et al. Visual imagery and perception in posttraumatic stress disorder. A positron emission tomographic investigation. Arch Gen Psychiatry. 1997;54:233–241. doi: 10.1001/archpsyc.1997.01830150057010. [DOI] [PubMed] [Google Scholar]
  • [52].Jarrell T.W., Gentile C.G., Romanski L.M., McCabe P.M., Schneiderman N. Involvement of cortical and thalamic auditory regions in retention of differential bradycardiac conditioning to acoustic conditioned stimuli in rabbits. Brain Res. 1987;412:285–294. doi: 10.1016/0006-8993(87)91135-8. [DOI] [PubMed] [Google Scholar]
  • [53].Romanski L.M., LeDoux J.E. Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex. 1993;3:515–532. doi: 10.1093/cercor/3.6.515. [DOI] [PubMed] [Google Scholar]
  • [54].Brunet E., Sarfati Y., Hardy-Bayle M.C., Decety J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage. 2000;11:157–166. doi: 10.1006/nimg.1999.0525. [DOI] [PubMed] [Google Scholar]
  • [55].Bremner J.D., Vermetten E., Afzal N., Vythilingam M. Deficits in verbal declarative memory function in women with childhood sexual abuse-related posttraumatic stress disorder. J Nerv Ment Dis. 2004;192:643–649. doi: 10.1097/01.nmd.0000142027.52893.c8. [DOI] [PubMed] [Google Scholar]
  • [56].Rubin D.C., Feldman M.E., Beckham J.C. Reliving, emotions, and fragmentation in the autobiographical memories of veterans diagnosed with PTSD. Appl Cogn Psychol. 2004;18:17–35. doi: 10.1002/acp.950. [DOI] [Google Scholar]
  • [57].Lui S., Huang X., Chen L., Tang H., Zhang T., Li X., et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proc Natl Acad Sci U S A. 2009;106:15412–15417. doi: 10.1073/pnas.0812751106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Yehuda R., McFarlane A.C. Conflict between current knowledge about posttraumatic stress disorder and its original conceptual basis. Am J Psychiatry. 1995;152:1705–1713. doi: 10.1176/ajp.152.12.1705. [DOI] [PubMed] [Google Scholar]
  • [59].Kim S.J., Lyoo I.K., Lee Y.S., Kim J., Sim M.E., Bae S.J., et al. Decreased cerebral blood flow of thalamus in PTSD patients as a strategy to reduce re-experience symptoms. Acta Psychiatr Scand. 2007;116:145–153. doi: 10.1111/j.1600-0447.2006.00952.x. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES