Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Oct 3;28(5):641–648. doi: 10.1007/s12264-012-1272-0

Metabolomics: a novel approach to identify potential diagnostic biomarkers and pathogenesis in Alzheimer’s disease

Xu-Hua Xu 1, Yue Huang 2, Gang Wang 1,, Sheng-Di Chen 1,3,
PMCID: PMC5561924  PMID: 23054640

Abstract

Although the pathogenesis of Alzheimer’s disease (AD) is still not fully understood, it is acknowledged that intervention should be made at the early stage. Therefore, identifying biomarkers for the clinical diagnosis is critical. Metabolomics, a novel “omics”, uses methods based on low-molecular-weight molecules, with high-throughput evaluation of a large number of metabolites that may lead to the identification of new disease-specific biomarkers and the elucidation of pathophysiological mechanisms. This review discusses metabolomics investigations of AD and potential future developments in this field.

Keywords: metabolomics, biomarkers, Alzheimer’s disease

Contributor Information

Gang Wang, Phone: +86-21-64454473, FAX: +86-21-64454473, Email: wgneuron@hotmail.com.

Sheng-Di Chen, Phone: +86-21-64454473, FAX: +86-21-64454473, Email: chen_sd@medmail.com.cn.

References

  • [1].Prince M, Jackson J. Alzheimer’s Disease International. World Alzheimer Report 2009.
  • [2].Reitz C., Brayne C., Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7:137–152. doi: 10.1038/nrneurol.2011.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Mayeux R., Reitz C., Brickman A.M., Haan M.N., Manly J.J., Glymour M.M., et al. Operationalizing diagnostic criteria for Alzheimer’s disease and other age-related cognitive impairment-Part 1. Alzheimers Dement. 2011;7:15–34. doi: 10.1016/j.jalz.2010.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Vellas B., Aisen P.S., Sampaio C., Carrillo M., Scheltens P., Scherrer B., et al. Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog Neurobiol. 2011;95:594–600. doi: 10.1016/j.pneurobio.2011.08.014. [DOI] [PubMed] [Google Scholar]
  • [5].Jack C.R., Jr, Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:257–262. doi: 10.1016/j.jalz.2011.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9:702–716. doi: 10.1016/S1474-4422(10)70119-8. [DOI] [PubMed] [Google Scholar]
  • [7].Herholz K., Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol. 2011;10:667–670. doi: 10.1016/S1474-4422(11)70123-5. [DOI] [PubMed] [Google Scholar]
  • [8].Li T.Q., Wahlund L.O. The search for neuroimaging biomarkers of Alzheimer’s disease with advanced MRI techniques. Acta Radiol. 2011;52:211–222. doi: 10.1258/ar.2010.100053. [DOI] [PubMed] [Google Scholar]
  • [9].Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 2011;29:26–32. doi: 10.1016/j.tibtech.2010.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9. [DOI] [PubMed] [Google Scholar]
  • [11].Herrup K. Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci. 2010;30:16755–16762. doi: 10.1523/JNEUROSCI.4521-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Agnati L.F., Guidolin D., Baluska F., Leo G., Barlow P.W., Carone C., et al. A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevance for Alzheimer’s disease. Curr Alzheimer Res. 2010;7:307–322. doi: 10.2174/156720510791162395. [DOI] [PubMed] [Google Scholar]
  • [13].Qiu C., Xu W., Fratiglioni L. Vascular and psychosocial factors in Alzheimer’s disease: epidemiological evidence toward intervention. J Alzheimers Dis. 2010;20:689–697. doi: 10.3233/JAD-2010-091663. [DOI] [PubMed] [Google Scholar]
  • [14].Li J., Wang Y.J., Zhang M., Xu Z.Q., Gao C.Y., Fang C.Q., et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76:1485–1491. doi: 10.1212/WNL.0b013e318217e7a4. [DOI] [PubMed] [Google Scholar]
  • [15].Murray I.V., Proza J.F., Sohrabji F., Lawler J.M. Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp Biol Med (Maywood) 2011;236:772–782. doi: 10.1258/ebm.2011.010355. [DOI] [PubMed] [Google Scholar]
  • [16].Wang J.H., Byun J., Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 2010;30:500–511. doi: 10.1016/j.semnephrol.2010.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Gomase V.S., Changbhale S.S., Patil S.A., Kale K.V. Metabolomics. Curr Drug Metab. 2008;9:89–98. doi: 10.2174/138920008783331149. [DOI] [PubMed] [Google Scholar]
  • [18].Ganti S., Weiss R.H. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol. 2011;29:551–557. doi: 10.1016/j.urolonc.2011.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Bernini P., Bertini I., Luchinat C., Tenori L., Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res. 2011;10:4983–4992. doi: 10.1021/pr200452j. [DOI] [PubMed] [Google Scholar]
  • [20].Bathen T.F., Sitter B., Sjobakk T.E., Tessem M.B., Gribbestad I.S. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010;70:6692–6696. doi: 10.1158/0008-5472.CAN-10-0437. [DOI] [PubMed] [Google Scholar]
  • [21].Benahmed MA, Santelmo N, Elbayed K, Frossard N, Noll E, Canuet M, et al. The assessment of the quality of the graft in an animal model for lung transplantation using the metabolomics (1) H highresolution magic angle spinning NMR spectroscopy. Magn Reson Med 2011, doi: 10.1002/mrm.24110. [DOI] [PubMed]
  • [22].Zhang A., Sun H., Wang P., Han Y., Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137:293–300. doi: 10.1039/c1an15605e. [DOI] [PubMed] [Google Scholar]
  • [23].Koek M.M., Jellema R.H., van der Greef J., Tas A.C., Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–328. doi: 10.1007/s11306-010-0254-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Zhou B., Xiao J.F., Tuli L., Ressom H.W. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–481. doi: 10.1039/c1mb05350g. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Wang X., Sun H., Zhang A., Wang P., Han Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci. 2011;34:3451–3459. doi: 10.1002/jssc.201100333. [DOI] [PubMed] [Google Scholar]
  • [26].Barbas C., Moraes E.P., Villasenor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal. 2011;55:823–831. doi: 10.1016/j.jpba.2011.02.001. [DOI] [PubMed] [Google Scholar]
  • [27].Ludwig C., Viant M.R. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal. 2010;21:22–32. doi: 10.1002/pca.1186. [DOI] [PubMed] [Google Scholar]
  • [28].Koek M.M., van der Kloet F.M., Kleemann R., Kooistra T., Verheij E.R., Hankemeier T. Semi-automated non-target processing in GC x GC-MS metabolomics analysis: applicability for biomedical studies. Metabolomics. 2011;7:1–14. doi: 10.1007/s11306-010-0219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Gokay O., Albert K. From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal Bioanal Chem. 2012;402:647–669. doi: 10.1007/s00216-011-5419-z. [DOI] [PubMed] [Google Scholar]
  • [30].Bogdanov M., Matson W.R., Wang L., Matson T., Saunders-Pullman R., Bressman S.S., et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain. 2008;131:389–396. doi: 10.1093/brain/awm304. [DOI] [PubMed] [Google Scholar]
  • [31].Paige L.A., Mitchell M.W., Krishnan K.R., Kaddurah-Daouk R., Steffens D.C. A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry. 2007;22:418–423. doi: 10.1002/gps.1690. [DOI] [PubMed] [Google Scholar]
  • [32].Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry 2011, doi:10.1038/mp.2011.131. [DOI] [PMC free article] [PubMed]
  • [33].Chishti M.A., Yang D.S., Janus C., Phinney A.L., Horne P., Pearson J., et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem. 2001;276:21562–21570. doi: 10.1074/jbc.M100710200. [DOI] [PubMed] [Google Scholar]
  • [34].Higgins L.S., Catalano R., Quon D., Cordell B. Transgenic mice expressing human beta-APP751, but not mice expressing beta-APP695, display early Alzheimer’s disease-like histopathology. Ann N Y Acad Sci. 1993;695:224–227. doi: 10.1111/j.1749-6632.1993.tb23056.x. [DOI] [PubMed] [Google Scholar]
  • [35].Salek R.M., Xia J., Innes A., Sweatman B.C., Adalbert R., Randle S., et al. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int. 2010;56:937–947. doi: 10.1016/j.neuint.2010.04.001. [DOI] [PubMed] [Google Scholar]
  • [36].Koch G., Esposito Z., Codeca C., Mori F., Kusayanagi H., Monteleone F., et al. Altered dopamine modulation of LTD-like plasticity in Alzheimer’s disease patients. Clin Neurophysiol. 2011;122:703–707. doi: 10.1016/j.clinph.2010.10.033. [DOI] [PubMed] [Google Scholar]
  • [37].Madsen K., Neumann W.J., Holst K., Marner L., Haahr M.T., Lehel S., et al. Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer’s disease. J Alzheimers Dis. 2011;26:457–466. doi: 10.1177/1533317511421779. [DOI] [PubMed] [Google Scholar]
  • [38].Kaddurah-Daouk R., Rozen S., Matson W., Han X., Hulette C.M., Burke J.R., et al. Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2011;7:309–317. doi: 10.1016/j.jalz.2010.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Han X. Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2005;2:65–77. doi: 10.2174/1567205052772786. [DOI] [PubMed] [Google Scholar]
  • [40].Mielke M.M., Bandaru V.V., Haughey N.J., Rabins P.V., Lyketsos C.G., Carlson M.C. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging. 2010;31:17–24. doi: 10.1016/j.neurobiolaging.2008.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Li N.J., Liu W.T., Li W., Li S.Q., Chen X.H., Bi K.S., et al. Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem. 2010;43:992–997. doi: 10.1016/j.clinbiochem.2010.04.072. [DOI] [PubMed] [Google Scholar]
  • [42].Wenk M.R. Lipidomics: new tools and applications. Cell. 2010;143:888–895. doi: 10.1016/j.cell.2010.11.033. [DOI] [PubMed] [Google Scholar]
  • [43].Han X., Rozen S., Boyle S.H., Hellegers C., Cheng H., Burke J.R., et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One. 2011;6:e21643. doi: 10.1371/journal.pone.0021643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Wang D.C., Sun C.H., Liu L.Y., Sun X.H., Jin X.W., Song W.L., et al. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol Aging. 2012;33:1057–1066. doi: 10.1016/j.neurobiolaging.2010.09.013. [DOI] [PubMed] [Google Scholar]
  • [45].Shepardson N.E., Shankar G.M., Selkoe D.J. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol. 2011;68:1239–1244. doi: 10.1001/archneurol.2011.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Tukiainen T., Tynkkynen T., Makinen V.P., Jylanki P., Kangas A., Hokkanen J., et al. A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer’s disease. Biochem Biophys Res Commun. 2008;375:356–361. doi: 10.1016/j.bbrc.2008.08.007. [DOI] [PubMed] [Google Scholar]
  • [47].Yaffe K., Kanaya A., Lindquist K., Simonsick E.M., Harris T., Shorr R.I., et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292:2237–2242. doi: 10.1001/jama.292.18.2237. [DOI] [PubMed] [Google Scholar]
  • [48].Wishart D.S., Tzur D., Knox C., Eisner R., Guo A.C., Young N., et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–526. doi: 10.1093/nar/gkl923. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES