Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Oct 3;28(5):606–610. doi: 10.1007/s12264-012-1275-x

Curcumin protects against staurosporine toxicity in rat neurons

Xiao-Yan Qin 1,3, Ji-Hui Lv 2, Jia Cui 1,3, Xue Fang 1,3, Yan Zhang 1,3,
PMCID: PMC5561927  PMID: 23054638

Abstract

Objective

Curcumin is extracted from the turmeric plant (Curcuma longa Linn.) and is widely used as a food additive and traditional medicine. The present study investigated the activity of curcumin against staurosporine (STS) toxicity in cell culture.

Methods

Rat hippocampal neurons in primary culture were exposed to STS (20 μmol/L) and treated with curcumin (20 μmol/L). Cell viability was tested by MTT assay and reactive oxygen species (ROS) were measured using the MitoSOX™ red mitochondrial superoxide indicator. Western blot was used to assess changes in the levels of caspase-3 (Csp3), heat shock protein 70 (Hsp70) and Akt.

Results

The results showed that curcumin protects against STS-induced cytotoxicity in rat hippocampal neurons. Csp3, Hsp70, Akt and ROS activation may be involved in this protection.

Conclusion

Curcumin could be a potential drug for combination with STS in cancer treatment to reduce the unwanted cytotoxicity of STS.

Keywords: curcumin, staurosporine-induced cytotoxicity, hippocampal neurons, caspase-3, Akt, Hsp70, reactive oxygen species, cancer treatment

Footnotes

These authors contributed equally to this work.

References

  • [1].Omura S., Iwai Y., Hirano A., Nakagawa A., Awaya J., Tsuchya H., et al. A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J Antibiot (Tokyo) 1977;30:275–282. doi: 10.7164/antibiotics.30.275. [DOI] [PubMed] [Google Scholar]
  • [2].Takahashi I., Asano K., Kawamoto I., Tamaoki T., Nakano H. UCN-01 and UCN-02, new selective inhibitors of protein kinase C. I. Screening, producing organism and fermentation. J Antibiot (Tokyo) 1989;42:564–570. doi: 10.7164/antibiotics.42.564. [DOI] [PubMed] [Google Scholar]
  • [3].Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986;135:397–402. doi: 10.1016/0006-291X(86)90008-2. [DOI] [PubMed] [Google Scholar]
  • [4].Gani O.A., Engh R.A. Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep. 2010;27:489–498. doi: 10.1039/b923848b. [DOI] [PubMed] [Google Scholar]
  • [5].Ringman J.M., Frautschy S.A., Cole G.M., Masterman D.L., Cummings J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res. 2005;2:131–136. doi: 10.2174/1567205053585882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Kim D.S., Park S.Y., Kim J.K. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett. 2001;303:57–61. doi: 10.1016/S0304-3940(01)01677-9. [DOI] [PubMed] [Google Scholar]
  • [7].Xu Y.X., Pindolia K.R., Janakiraman N., Chapman R.A., Gautam S.C. Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol. 1997;11:49–62. [PubMed] [Google Scholar]
  • [8].Pan M.H., Lin-Shiau S.Y., Lin J.K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000;60:1665–1676. doi: 10.1016/S0006-2952(00)00489-5. [DOI] [PubMed] [Google Scholar]
  • [9].Ono K., Hasegawa K., Naiki H., Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res. 2004;75:742–750. doi: 10.1002/jnr.20025. [DOI] [PubMed] [Google Scholar]
  • [10].Qin X.Y., Cheng Y., Cui J., Zhang Y., Yu L.C. Potential protection of curcumin against amyloid beta-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett. 2009;463:158–161. doi: 10.1016/j.neulet.2009.07.047. [DOI] [PubMed] [Google Scholar]
  • [11].Calabrese V., Scapagnini G., Colombrita C., Ravagna A., Pennisi G., Giuffrida Stella A.M., et al. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids. 2003;25:437–444. doi: 10.1007/s00726-003-0048-2. [DOI] [PubMed] [Google Scholar]
  • [12].Papasozomenos S., Shanavas A. Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3 beta but not of cyclin-dependent kinase 5 and c-Jun NH2-terminal kinase and concomitantly abolishes hyperphosphorylation of tau: implications for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2002;99:1140–1145. doi: 10.1073/pnas.032646799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Setalo G., Jr, Singh M., Guan X., Toran-Allerand C.D. Estradiolinduced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J Neurobiol. 2002;50:1–12. doi: 10.1002/neu.10000. [DOI] [PubMed] [Google Scholar]
  • [14].Zamostiano R., Pinhasov A., Bassan M., Perl O., Steingart R.A., Atlas R., et al. A femtomolar-acting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neurosci Lett. 1999;264:9–12. doi: 10.1016/S0304-3940(99)00168-8. [DOI] [PubMed] [Google Scholar]
  • [15].Hill M.M., Hemmings B.A. Inhibition of protein kinase B/Akt. Implications for cancer therapy. Pharmacol Ther. 2002;93:243–251. doi: 10.1016/S0163-7258(02)00193-6. [DOI] [PubMed] [Google Scholar]
  • [16].Burugula B., Ganesh B.S., Chintala S.K. Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2011;52:4263–4273. doi: 10.1167/iovs.10-7103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Sharma R.A., Gescher A.J., Steward W.P. Curcumin: the story so far. Eur J Cancer. 2005;41:1955–1968. doi: 10.1016/j.ejca.2005.05.009. [DOI] [PubMed] [Google Scholar]
  • [18].Chiu S.S., Lui E., Majeed M., Vishwanatha J.K., Ranjan A.P., Maitra A., et al. Differential distribution of intravenous curcumin formulations in the rat brain. Anticancer Res. 2011;31:907–911. [PMC free article] [PubMed] [Google Scholar]
  • [19].Frautschy S.A., Hu W., Kim P., Miller S.A., Chu T., Harris-White M.E., et al. Phenolic anti-inflammatory antioxidant reversal of Abetainduced cognitive deficits and neuropathology. Neurobiol Aging. 2001;22:993–1005. doi: 10.1016/S0197-4580(01)00300-1. [DOI] [PubMed] [Google Scholar]
  • [20].Li W.P., Chan W.Y., Lai H.W., Yew D.T. Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J Mol Neurosci. 1997;8:75–82. doi: 10.1007/BF02736774. [DOI] [PubMed] [Google Scholar]
  • [21].Gomez-Isla T., Hollister R., West H., Mui S., Growdon J.H., Petersen R.C., et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997;41:17–24. doi: 10.1002/ana.410410106. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES