Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2013 Apr 10;29(5):655–660. doi: 10.1007/s12264-013-1330-2

Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson’s disease

Anupom Borah 1,, Rajib Paul 1, Muhammed Khairujjaman Mazumder 1, Nivedita Bhattacharjee 1
PMCID: PMC5561952  PMID: 23575894

Abstract

While the cause of dopaminergic neuronal cell death in Parkinson’s disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical (.OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another signifi cant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.

Keywords: oxidative stress, hydroxyl radical, mitochondrial complex-I, α-synuclein, Lewy body, ubiquitinproteasome system

References

  • [1].Carlsson A. Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm. 2002;109:777–787. doi: 10.1007/s007020200064. [DOI] [PubMed] [Google Scholar]
  • [2].Borah A, Mohanakumar KP. Long-term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol. 2007;27:985–996. doi: 10.1007/s10571-007-9213-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal. 2005;7:685–693. doi: 10.1089/ars.2005.7.685. [DOI] [PubMed] [Google Scholar]
  • [4].Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, et al. Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol. 1998;44:S89–98. doi: 10.1002/ana.410440714. [DOI] [PubMed] [Google Scholar]
  • [5].Beal MF. Experimental models of Parkinson’s disease. Nat Rev Neurosci. 2001;2:325–332. doi: 10.1038/35072550. [DOI] [PubMed] [Google Scholar]
  • [6].Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279:1156–1166. doi: 10.1111/j.1742-4658.2012.08491.x. [DOI] [PubMed] [Google Scholar]
  • [7].Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem. 2002;80:101–110. doi: 10.1046/j.0022-3042.2001.00676.x. [DOI] [PubMed] [Google Scholar]
  • [8].Borah A, Mohanakumar KP. L-DOPA induced-endogenous 6-hydroxydopamine is the cause of aggravated dopaminergic neurodegeneration in Parkinson’s disease patients. Med Hypotheses. 2012;79(2):271–273. doi: 10.1016/j.mehy.2012.05.008. [DOI] [PubMed] [Google Scholar]
  • [9].Borah A, Mohanakumar KP. L-DOPA-induced 6-hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochem Int. 2010;56:352–362. doi: 10.1016/j.neuint.2009.11.008. [DOI] [PubMed] [Google Scholar]
  • [10].Borah A, Mohanakumar KP. Salicylic acid protects against chronic L-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Res. 2010;16:192–199. doi: 10.1016/j.brainres.2010.05.010. [DOI] [PubMed] [Google Scholar]
  • [11].Borah A, Mohanakumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental Parkinsonism in rodents. J Pineal Res. 2009;47:293–300. doi: 10.1111/j.1600-079X.2009.00713.x. [DOI] [PubMed] [Google Scholar]
  • [12].Borah A, Mohanakumar KP. Long term L-DOPA treatment causes production of 6 OHDA in the mouse striatum: Involvement of hydroxyl radical. Ann Neurosci. 2009;16:160–165. [Google Scholar]
  • [13].Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci. 2008;28:425–433. doi: 10.1523/JNEUROSCI.3602-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Dillinger TL, Barriga P, Escarcega S, Jimenez M, Lowe DS, Grivetti LE. Food of the Gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2000;130:2057S–2072S. doi: 10.1093/jn/130.8.2057S. [DOI] [PubMed] [Google Scholar]
  • [15].Ziegleder G, Stojacic E, Stumpf B. Occurrence of betaphenylethylamine and its derivatives in cocoa and cocoa products. Z Lebensm Unters Forsch. 1992;195:235–238. doi: 10.1007/BF01202801. [DOI] [PubMed] [Google Scholar]
  • [16].Philips SR. Amphetamine, p-hydroxyamphetamine and b-phenylethylamine in mouse brain and urine after (−)- and (+)-deprenyl administration. J Pharm Pharmacol. 1981;33:739–741. doi: 10.1111/j.2042-7158.1981.tb13920.x. [DOI] [PubMed] [Google Scholar]
  • [17].Durden DA, Philips SR, Boulton AA. Identification and distribution of beta-phenylethylamine in the rat. Can J Biochem. 1973;51:995–1002. doi: 10.1139/o73-129. [DOI] [PubMed] [Google Scholar]
  • [18].Pastore P, Favaro G, Badocco D, Tapparo A, Cavalli S, Saccani G. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode. J Chromatogr. 2005;1098:111–115. doi: 10.1016/j.chroma.2005.08.065. [DOI] [PubMed] [Google Scholar]
  • [19].Hurst WJ, Toomey PB. High-performance liquid chromatographic determination of four biogenic amines in chocolate. Analyst. 1981;106:394–402. doi: 10.1039/an9810600394. [DOI] [PubMed] [Google Scholar]
  • [20].Bonetta S, Bonetta S, Carraro E, Coïsson JD, Travaglia F, Arlorio M. Detection of biogenic amine producer bacteria in a typical Italian goat cheese. J Food Prot. 2008;71:205–209. doi: 10.4315/0362-028x-71.1.205. [DOI] [PubMed] [Google Scholar]
  • [21].Landete JM, Ferrer S, Polo L, Pardo I. Biogenic amines in wines from three Spanish regions. J Agric Food Chem. 2005;53:1119–1124. doi: 10.1021/jf049340k. [DOI] [PubMed] [Google Scholar]
  • [22].Garcia VN, Saurina J, Hernández-Cassou S. Highperformance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure. Anal Chim Acta. 2006;575:97–105. doi: 10.1016/j.aca.2006.05.074. [DOI] [PubMed] [Google Scholar]
  • [23].Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004;90:257–271. doi: 10.1111/j.1471-4159.2004.02501.x. [DOI] [PubMed] [Google Scholar]
  • [24].Paterson IA, Juorio AV, Boulton AA. Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem. 1990;55:1827–1837. doi: 10.1111/j.1471-4159.1990.tb05764.x. [DOI] [PubMed] [Google Scholar]
  • [25].Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats. Neurochem Int. 2006;49:28–40. doi: 10.1016/j.neuint.2005.12.016. [DOI] [PubMed] [Google Scholar]
  • [26].Thomas B, Mohanakumar KP. Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigros-tiratum. J Pineal Res. 2004;36:25–32. doi: 10.1046/j.1600-079X.2003.00096.x. [DOI] [PubMed] [Google Scholar]
  • [27].Thomas B, Saravanan KS, Mohanakumar KP. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int. 2008;52:990–1001. doi: 10.1016/j.neuint.2007.10.012. [DOI] [PubMed] [Google Scholar]
  • [28].Sengupta T, Mohanakumar KP. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochem Int. 2010;57:637–646. doi: 10.1016/j.neuint.2010.07.013. [DOI] [PubMed] [Google Scholar]
  • [29].Gluck MR, Zeevalk GD. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem. 2004;91:788–795. doi: 10.1111/j.1471-4159.2004.02747.x. [DOI] [PubMed] [Google Scholar]
  • [30].Kawano T, Pinontoan R, Uozumi N, Morimitsu Y, Miyake C, Asada K, et al. Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ influx. Plant Cell Physiol. 2000;41:1259–1266. doi: 10.1093/pcp/pcd053. [DOI] [PubMed] [Google Scholar]
  • [31].Ortmann R, Schaub M, Felner A, Lauber J, Christen P, Waldmeier PC. Phenylethylamine-induced stereotypes in the rat: a behavioral test system for assessment of MAO-B inhibitors. Psychopharmacology (Berl) 1984;84:22–27. doi: 10.1007/BF00432018. [DOI] [PubMed] [Google Scholar]
  • [32].Lapin IP. Antagonism by CPP (+/−)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, of beta-phenylethylamine (PEA)-induced hypermotility in mice of different strains. Pharmacol Biochem Behav. 1996;55:175–178. doi: 10.1016/0091-3057(95)02230-9. [DOI] [PubMed] [Google Scholar]
  • [33].Barroso N, Rodriguez M. Beta-Phenylethylamine regulation of dopaminergic nigrostriatal cell activity. Brain Res. 1995;12:201–204. doi: 10.1016/0006-8993(95)01098-x. [DOI] [PubMed] [Google Scholar]
  • [34].Barroso N, Rodriguez M. Action of β-phenylethylamine and related amines on nigrostriatal dopamine neurotransmission. Eur J Pharmacol. 1996;297:195–203. doi: 10.1016/0014-2999(95)00757-1. [DOI] [PubMed] [Google Scholar]
  • [35].Sato S, Tamura A, Kitagawa S, Koshiro A. A kinetic analysis of the effects of beta-phenylethylamine on the concentrations of dopamine and its metabolites in the rat striatum. J Pharm Sci. 1997;86:487–496. doi: 10.1021/js960192p. [DOI] [PubMed] [Google Scholar]
  • [36].Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM, et al. Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav. 2006;84:321–329. doi: 10.1016/j.pbb.2006.05.017. [DOI] [PubMed] [Google Scholar]
  • [37].Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–1306. doi: 10.1038/81834. [DOI] [PubMed] [Google Scholar]
  • [38].Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292. [DOI] [PubMed] [Google Scholar]
  • [39].Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013;51:35–42. doi: 10.1016/j.nbd.2012.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, et al. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport. 1999;10:717–721. doi: 10.1097/00001756-199903170-00011. [DOI] [PubMed] [Google Scholar]
  • [41].Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000;275:18344–18349. doi: 10.1074/jbc.M000206200. [DOI] [PubMed] [Google Scholar]
  • [42].Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med. 2002;32:1264–1275. doi: 10.1016/S0891-5849(02)00804-3. [DOI] [PubMed] [Google Scholar]
  • [43].Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–822. doi: 10.1126/science.1087753. [DOI] [PubMed] [Google Scholar]
  • [44].Ghee M, Fournier A, Mallet J. Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J Neurochem. 2000;75:2221–2224. doi: 10.1046/j.1471-4159.2000.0752221.x. [DOI] [PubMed] [Google Scholar]
  • [45].Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric α-synuclein bind to the S6 proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003;278:11753–11759. doi: 10.1074/jbc.M208641200. [DOI] [PubMed] [Google Scholar]
  • [46].Sherman MY, Goldberg AL. Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 2001;19:15–32. doi: 10.1016/S0896-6273(01)00177-5. [DOI] [PubMed] [Google Scholar]
  • [47].Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2002;277:5411–5417. doi: 10.1074/jbc.M105326200. [DOI] [PubMed] [Google Scholar]
  • [48].Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23:10756–10764. doi: 10.1523/JNEUROSCI.23-34-10756.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis. 2006;22:404–420. doi: 10.1016/j.nbd.2005.12.003. [DOI] [PubMed] [Google Scholar]
  • [50].Chou AP, Li S, Fitzmaurice AG, Bronstei JM. Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology. 2010;4:367–372. doi: 10.1016/j.neuro.2010.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha synuclein. J Biol Chem. 2002;277:1641–1644. doi: 10.1074/jbc.C100560200. [DOI] [PubMed] [Google Scholar]
  • [52].Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J Neurochem. 2000;74:721–729. doi: 10.1046/j.1471-4159.2000.740721.x. [DOI] [PubMed] [Google Scholar]
  • [53].McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56:149–162. doi: 10.1002/ana.20186. [DOI] [PubMed] [Google Scholar]
  • [54].Olanow CW, McNaught KS. Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord. 2006;21:1806–1823. doi: 10.1002/mds.21013. [DOI] [PubMed] [Google Scholar]
  • [55].Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem. 2004;279:20699–20707. doi: 10.1074/jbc.M313579200. [DOI] [PubMed] [Google Scholar]
  • [56].Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron. 2002;36:1007–1019. doi: 10.1016/S0896-6273(02)01125-X. [DOI] [PubMed] [Google Scholar]
  • [57].Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol. 2000;166:29–43. doi: 10.1006/exnr.2000.7489. [DOI] [PubMed] [Google Scholar]
  • [58].Hetherington MM, MacDiarmid JI. “Chocolate addiction”: a preliminary study of its description and its relationship to problem eating. Appetite. 1993;21:233–246. doi: 10.1006/appe.1993.1042. [DOI] [PubMed] [Google Scholar]
  • [59].Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51:7292–7295. doi: 10.1021/jf0344385. [DOI] [PubMed] [Google Scholar]
  • [60].Ruan H, Yang Y, Zhu X, Wang X, Chen R. Neuroprotective effects of (+/−)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci Lett. 2009;450:152–157. doi: 10.1016/j.neulet.2008.12.003. [DOI] [PubMed] [Google Scholar]
  • [61].Kim JS, Kim JM, Kim O J, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci. 2010;17:1165–1168. doi: 10.1016/j.jocn.2010.01.042. [DOI] [PubMed] [Google Scholar]
  • [62].Mennen LI, Walker R, Bennetau-Pelissero C, Scalbert A. Risks and safety of polyphenol consumption. Am J Clin Nutr. 2005;81:326S–329S. doi: 10.1093/ajcn/81.1.326S. [DOI] [PubMed] [Google Scholar]
  • [63].Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81:317S–325S. doi: 10.1093/ajcn/81.1.317S. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES