Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 May 7;30(6):956–966. doi: 10.1007/s12264-013-1437-5

The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function

Arne Raasakka 1, Petri Kursula 1,2,
PMCID: PMC5562554  PMID: 24807122

Abstract

The membrane-anchored myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.

Keywords: 2′,3′-cyclic nucleotide 3′-phosphodiesterase; calmodulin; central nervous system; cytoskeleton; myelin proteins; RNA

References

  • [1].Hartline DK. What is myelin? Neuron Glia Biol. 2008;4:153–163. doi: 10.1017/S1740925X09990263. [DOI] [PubMed] [Google Scholar]
  • [2].Aggarwal S, Yurlova L, Simons M. Central nervous system myelin: Structure, synthesis and assembly. Trends Cell Biol. 2011;21:585–593. doi: 10.1016/j.tcb.2011.06.004. [DOI] [PubMed] [Google Scholar]
  • [3].Aggarwal S, Yurlova L, Snaidero N, Reetz C, Frey S, Zimmermann J, et al. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell. 2011;21:445–456. doi: 10.1016/j.devcel.2011.08.001. [DOI] [PubMed] [Google Scholar]
  • [4].de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci. 2012;69:2879–2894. doi: 10.1007/s00018-012-0958-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Kursula P. Structural properties of proteins specific to the myelin sheath. Amino Acids. 2008;34:175–185. doi: 10.1007/s00726-006-0479-7. [DOI] [PubMed] [Google Scholar]
  • [6].Quarles R. Myelin sheaths: Glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci. 2002;59:1851–1871. doi: 10.1007/PL00012510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Mirshafiey A, Kianiaslani M. Autoantigens and autoantibodies in multiple sclerosis. Iran J Allergy Asthma Immunol. 2013;12:292–303. [PubMed] [Google Scholar]
  • [8].Li J, Parker B, Martyn C, Natarajan C, Guo J. The PMP22 gene and its related diseases. Mol Neurobiol. 2013;47:673–698. doi: 10.1007/s12035-012-8370-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Yamamoto T, Shimojima K. Pelizaeus-Merzbacher disease as a chromosomal disorder. Congenit Anom (Kyoto) 2013;53:3–8. doi: 10.1111/cga.12005. [DOI] [PubMed] [Google Scholar]
  • [10].Hobson GM, Garbern JY. Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol. 2012;32:62–67. doi: 10.1055/s-0032-1306388. [DOI] [PubMed] [Google Scholar]
  • [11].Rösener M, Muraro PA, Riethmüller A, Kalbus M, Sappler G, Thompson RJ, et al. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A novel candidate autoantigen in demyelinating diseases. J Neuroimmunol. 1997;75:28–34. doi: 10.1016/S0165-5728(96)00230-5. [DOI] [PubMed] [Google Scholar]
  • [12].Drummond GI, Iyer NT, Keith J. Hydrolysis of ribonucleoside 2′,3′-cyclic phosphates by a diesterase from brain. J Biol Chem. 1962;237:3535–3539. [Google Scholar]
  • [13].Drummond GI, Perrott-Yee S. Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J Biol Chem. 1961;236:1126–1129. [PubMed] [Google Scholar]
  • [14].Trapp BD, Bernier L, Andrews SB, Colman DR. Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem. 1988;51:859–868. doi: 10.1111/j.1471-4159.1988.tb01822.x. [DOI] [PubMed] [Google Scholar]
  • [15].Radtke C, Sasaki M, Lankford KL, Gallo V, Kocsis JD. CNPase expression in olfactory ensheathing cells. J Biomed Biotechnol. 2011;2011:608496. doi: 10.1155/2011/608496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Monoh K, Kurihara T, Takahashi Y, Ichikawa T, Kumanishi T, Hayashi S, et al. Structure, expression and chromosomal localization of the gene encoding human 2′,3′-cyclicnucleotide 3′-phosphodiesterase. Gene. 1993;129:297–301. doi: 10.1016/0378-1119(93)90283-9. [DOI] [PubMed] [Google Scholar]
  • [17].Kurihara T, Monoh K, Sakimura K, Takahashi Y. Alternative splicing of mouse-brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase messenger-RNA. Biochem Biophys Res Commun. 1990;170:1074–1081. doi: 10.1016/0006-291X(90)90502-E. [DOI] [PubMed] [Google Scholar]
  • [18].Kurihara T, Tohyama Y, Yamamoto J, Kanamatsu T, Watanabe R, Kitajima S. Origin of brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase doublet. Neurosci Lett. 1992;138:49–52. doi: 10.1016/0304-3940(92)90469-N. [DOI] [PubMed] [Google Scholar]
  • [19].Douglas AJ, Fox MF, Abbott CM, Hinks LJ, Sharpe G, Povey S, et al. Structure and chromosomal localization of the human 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene. Ann Hum Genet. 1992;56:243–254. doi: 10.1111/j.1469-1809.1992.tb01149.x. [DOI] [PubMed] [Google Scholar]
  • [20].O’Neill R, Minuk J, Cox M, Braun P, Gravel M. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J Neurosci Res. 1997;50:248–257. doi: 10.1002/(SICI)1097-4547(19971015)50:2<248::AID-JNR13>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • [21].Gravel M, Gao E, Hervouet-Zeiber C, Parsons V, Braun P. Transcriptional regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene expression by cyclic AMP in C6 cells. J Neurochem. 2000;75:1940–1950. doi: 10.1046/j.1471-4159.2000.0751940.x. [DOI] [PubMed] [Google Scholar]
  • [22].Lee J, O’Neill R, Park M, Gravel M, Braun P. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: Implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol Cell Neurosci. 2006;31:446–462. doi: 10.1016/j.mcn.2005.10.017. [DOI] [PubMed] [Google Scholar]
  • [23].Gravel M, DeAngelis D, Braun PE. Molecular-cloning and characterization of rat-brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform-2. J Neurosci Res. 1994;38:243–247. doi: 10.1002/jnr.490380302. [DOI] [PubMed] [Google Scholar]
  • [24].Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, 3rd, et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 2013;154:971–982. doi: 10.1016/j.cell.2013.07.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Stingo S, Masullo M, Polverini E, Laezza C, Ruggiero I, Arcone R, et al. The N-terminal domain of 2′,3′-cyclic nucleotide 3′-phosphodiesterase harbors a GTP/ATP binding site. Chem Biol Drug Des. 2007;70:502–510. doi: 10.1111/j.1747-0285.2007.00592.x. [DOI] [PubMed] [Google Scholar]
  • [26].Kursula P. The current status of structural studies on proteins of the myelin sheath (review) Int J Mol Med. 2001;8:475–479. [PubMed] [Google Scholar]
  • [27].Myllykoski M, Baumgärtel P, Kursula P. Conformations of peptides derived from myelin-specific proteins in membranemimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids. 2012;42:1467–1474. doi: 10.1007/s00726-011-0911-5. [DOI] [PubMed] [Google Scholar]
  • [28].Lee J, Gravel M, Gao E, O’Neill R, Braun P. Identification of essential residues in 2′,3′-cyclic nucleotide 3′-phosphodiesterase — chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity. J Biol Chem. 2001;276:14804–14813. doi: 10.1074/jbc.M009434200. [DOI] [PubMed] [Google Scholar]
  • [29].Kozlov G, Lee J, Elias D, Gravel M, Gutierrez P, Ekiel I, et al. Structural evidence that brain cyclic nucleotide phosphodiesterase is a member of the 2H phosphodiesterase superfamily. J Biol Chem. 2003;278:46021–46028. doi: 10.1074/jbc.M305176200. [DOI] [PubMed] [Google Scholar]
  • [30].Myllykoski M, Raasakka A, Lehtimäki M, Han H, Kursula I, Kursula P. Crystallographic analysis of the reaction cycle of 2′,3′-cyclic nucleotide 3′-phosphodiesterase, a unique member of the 2H phosphoesterase family. J Mol Biol. 2013;425:4307–432. doi: 10.1016/j.jmb.2013.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Verrier JD, Jackson TC, Bansal R, Kochanek PM, Puccio AM, Okonkwo DO, et al. The brain in vivo expresses the 2′,3′-cAMP-adenosine pathway. J Neurochem. 2012;122:115–125. doi: 10.1111/j.1471-4159.2012.07705.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Verrier J, Jackson T, Bansal R, Kochanek PM, Jackson E. Oligodendrocyte 2′,3′-cyclic nucleotide 3′-phosphodiesterase participates in localized adenosine production: Possible role in traumatic brain injury. J Neurotrauma. 2012;29:A168–A169. doi: 10.1089/neu.2011.1895. [DOI] [Google Scholar]
  • [33].Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–374. doi: 10.1038/ng1095. [DOI] [PubMed] [Google Scholar]
  • [34].Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci. 1996;7:453–466. doi: 10.1006/mcne.1996.0033. [DOI] [PubMed] [Google Scholar]
  • [35].Yin X, Peterson J, Gravel M, Braun P, Trapp B. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res. 1997;50:238–247. doi: 10.1002/(SICI)1097-4547(19971015)50:2<238::AID-JNR12>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • [36].Hinman JD, Chen C, Oh S, Hollander W, Abraham CR. Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. Glia. 2008;56:118–133. doi: 10.1002/glia.20595. [DOI] [PubMed] [Google Scholar]
  • [37].Lee J, Gravel M, Zhang R, Thibault P, Braun P. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol. 2005;170:661–673. doi: 10.1083/jcb.200411047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Walsh MJ, Murray JM. Dual implication of 2′,3′-cyclic nucleotide 3′ phosphodiesterase as major autoantigen and C3 complement-binding protein in the the pathogenesis of multiple sclerosis. J Clin Invest. 1998;101:1923–1931. doi: 10.1172/JCI1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Muraro PA, Kalbus M, Afshar G, McFarland HF, Martin R. T cell response to 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in multiple sclerosis patients. J Neuroimmunol. 2002;130:233–242. doi: 10.1016/S0165-5728(02)00229-1. [DOI] [PubMed] [Google Scholar]
  • [40].Lovato L, Cianti R, Gini B, Marconi S, Bianchi L, Armini A, et al. Transketolase and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase type I isoforms are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol Cell Proteomics. 2008;7:2337–2349. doi: 10.1074/mcp.M700277-MCP200. [DOI] [PubMed] [Google Scholar]
  • [41].Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G. Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging. 2001;22:547–553. doi: 10.1016/S0197-4580(01)00218-4. [DOI] [PubMed] [Google Scholar]
  • [42].Hagemeyer N, Goebbels S, Papiol S, Kästner A, Hofer S, Begemann M, et al. A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med. 2012;4:528–539. doi: 10.1002/emmm.201200230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Peirce TR, Bray NJ, Williams NM, Haroutunian V, Buxbaum J, Buckland P, et al. Convergent functional genomics, association and linkage analysis suggests 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) as a potential susceptibility gene for schizophrenia. Am J Med Genet, B Neuropsychiatr Genet. 2004;130B:81. [Google Scholar]
  • [44].Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A, et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry. 2006;63:18–24. doi: 10.1001/archpsyc.63.1.18. [DOI] [PubMed] [Google Scholar]
  • [45].Georgieva L, Moskvina V, Peirce T, Norton N, Bray NJ, Jones L, et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci U S A. 2006;103:12469–12474. doi: 10.1073/pnas.0603029103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Dracheva S, Davis K, Chin B, Woo D, Schmeidler J, Haroutunian V. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis. 2006;21:531–540. doi: 10.1016/j.nbd.2005.08.012. [DOI] [PubMed] [Google Scholar]
  • [47].Barley K, Dracheva S, Byne W. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res. 2009;112:54–64. doi: 10.1016/j.schres.2009.04.019. [DOI] [PubMed] [Google Scholar]
  • [48].Usui H, Takahashi N, Saito S, Ishihara R, Aoyama N, Ikeda M, et al. The 2′,3′-cyclic nucleotide 3′-phosphodiesterase and oligodendrocyte lineage transcription factor 2 genes do not appear to be associated with schizophrenia in the Japanese population. Schizophr Res. 2006;88:245–250. doi: 10.1016/j.schres.2006.07.019. [DOI] [PubMed] [Google Scholar]
  • [49].Donohoe G, Morris D, Allot E, Clarke S, Quinn E, Robertson I, et al. Olig-2 and CNP are associated with schizophrenia risk and variance in general cognition and memory function in an Irish sample. Biol Psychiatry. 2007;61(8):189S. [Google Scholar]
  • [50].Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, et al. Towards understanding the schizophrenia code: An expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:129–158. doi: 10.1002/ajmg.b.30481. [DOI] [PubMed] [Google Scholar]
  • [51].Tang F, Qu M, Wang L, Ruan Y, Lu T, Zhang H, et al. Casecontrol association study of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) gene and schizophrenia in the Han Chinese population. Neurosci Lett. 2007;416:113–116. doi: 10.1016/j.neulet.2007.01.054. [DOI] [PubMed] [Google Scholar]
  • [52].Voineskos AN, de Luca V, Bulgin NL, van Adrichem Q, Shaikh S, Lang DJ, et al. A family-based association study of the myelin-associated glycoprotein and 2′,3′-cyclic nucleotide 3′-phosphodiesterase genes with schizophrenia. Psychiatr Genet. 2008;18:143–146. doi: 10.1097/YPG.0b013e3282fa1874. [DOI] [PubMed] [Google Scholar]
  • [53].Voineskos AN, Bulgin N, von Adrichem Q, Wong A, Lang D, Honer W, et al. MAG gene but not CNP gene associated with schizophrenia. Biol Psychiatry. 2007;61:S209. [Google Scholar]
  • [54].Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res. 2008;98:129–138. doi: 10.1016/j.schres.2007.09.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [55].Verrier JD, Exo JL, Jackson TC, Ren J, Gillespie DG, Dubey RK, et al. Expression of the 2′,3′-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem. 2011;118:979–987. doi: 10.1111/j.1471-4159.2011.07392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R, Goebbels S, et al. Role of CNPase in the oligodendrocytic extracellular 2′,3′-cAMP-adenosine pathway. Glia. 2013;61:1595–1606. doi: 10.1002/glia.22523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Jackson EK. The 2′,3′-cAMP-adenosine pathway. A Am J Physiol Renal Physiol. 2011;301:1160–1167. doi: 10.1152/ajprenal.00450.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Thompson JE, Venegas FD, Raines RT. Energetics of catalysis by ribonucleases: Fate of the 2′,3′-cyclic phosphodiester intermediate. Biochemistry. 1994;33:7408–7414. doi: 10.1021/bi00189a047. [DOI] [PubMed] [Google Scholar]
  • [59].Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, et al. Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol. 2009;296:C1428–C1439. doi: 10.1152/ajpcell.00006.2009. [DOI] [PubMed] [Google Scholar]
  • [60].Popow J, Schleiffer A, Martinez J. Diversity and roles of (t) RNA ligases. Cell Mol Life Sci. 2012;69:2657–2670. doi: 10.1007/s00018-012-0944-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Gravel M, Robert F, Kottis V, Gallouzi I, Pelletier J, Braun PE. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A novel RNA-binding protein that inhibits protein synthesis. J Neurosci Res. 2009;87:1069–1079. doi: 10.1002/jnr.21939. [DOI] [PubMed] [Google Scholar]
  • [62].Myllykoski M, Itoh K, Kangas SM, Heape AM, Kang SU, Lubec G, et al. The N-terminal domain of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Direct molecular interaction with the calcium sensor calmodulin. J Neurochem. 2012;123:515–524. doi: 10.1111/jnc.12000. [DOI] [PubMed] [Google Scholar]
  • [63].Olafson R, Drummond G, Lee J. Studies on 2′,3′-cyclic nucleotide-3′-phosphohydrolase from brain. Can J Biochem. 1969;47:961–966. doi: 10.1139/o69-151. [DOI] [PubMed] [Google Scholar]
  • [64].Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. Mammalian 2′,3′ cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA. 2008;14:204–210. doi: 10.1261/rna.858108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Heaton P, Eckstein F. Diastereomeric specificity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Nucleic Acids Res. 1996;24:850–853. doi: 10.1093/nar/24.5.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Sakamoto Y, Tanaka N, Ichimiya T, Kurihara T, Nakamura K. Crystal structure of the catalytic fragment of human brain 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. J Mol Biol. 2005;346:789–800. doi: 10.1016/j.jmb.2004.12.024. [DOI] [PubMed] [Google Scholar]
  • [67].Myllykoski M, Raasakka A, Han H, Kursula P. Myelin 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Active-site ligand binding and molecular conformation. PLoS One. 2012;7:e32336. doi: 10.1371/journal.pone.0032336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68].Mazumder R, Iyer L, Vasudevan S, Aravind L. Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily. Nucleic Acids Res. 2002;30:5229–5243. doi: 10.1093/nar/gkf645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Nasr F, Filipowicz W. Characterization of the saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. Nucleic Acids Res. 2000;28:1676–1683. doi: 10.1093/nar/28.8.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Greer CL, Peebles CL, Gegenheimer P, Abelson J. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell. 1983;32:537–546. doi: 10.1016/0092-8674(83)90473-7. [DOI] [PubMed] [Google Scholar]
  • [71].Xu Q, Teplow D, Lee TD, Abelson J. Domain structure in yeast tRNA ligase. Biochemistry. 1990;29:6132–6138. doi: 10.1021/bi00478a004. [DOI] [PubMed] [Google Scholar]
  • [72].Kozlov G, Denisov AY, Pomerantseva E, Gravel M, Braun PE, Gehring K. Solution structure of the catalytic domain of RICH protein from goldfish. FEBS J. 2007;274:1600–1609. doi: 10.1111/j.1742-4658.2007.05707.x. [DOI] [PubMed] [Google Scholar]
  • [73].Koonin EV, Gorbalenya AE. Related domains in yeast tRNA ligase, bacteriophage T4 polynucleotide kinase and RNA ligase, and mammalian myelin 2′,3′-cyclic nucleotide phosphohydrolase revealed by amino acid sequence comparison. FEBS Lett. 1990;268:231–234. doi: 10.1016/0014-5793(90)81015-G. [DOI] [PubMed] [Google Scholar]
  • [74].Hanson PI, Whiteheart SW. AAA+ proteins: Have engine, will work. Nat Rev Mol Cell Biol. 2005;6:519–529. doi: 10.1038/nrm1684. [DOI] [PubMed] [Google Scholar]
  • [75].Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Berggård T, Arrigoni G, Olsson O, Fex M, Linse S, James P. 140 mouse brain proteins identified by Ca2+-calmodulin affinity chromatography and tandem mass spectrometry. J Proteome Res. 2006;5:669–687. doi: 10.1021/pr050421l. [DOI] [PubMed] [Google Scholar]
  • [77].Braun PE, Bambrick LL, Edwards AM, Bernier L. 2′,3′-cyclic nucleotide 3′-phosphodiesterase has characteristics of cytoskeletal proteins — a hypothesis for its function. Ann NY Acad Sci. 1990;605:55–65. doi: 10.1111/j.1749-6632.1990.tb42380.x. [DOI] [PubMed] [Google Scholar]
  • [78].Bifulco M, Laezza C, Stingo S, Wolff J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc Natl Acad Sci U S A. 2002;99:1807–1812. doi: 10.1073/pnas.042678799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Wilson SJ, Schoggins JW, Zang T, Kutluay SB, Jouvenet N, Alim MA, et al. Inhibition of HIV-1 particle assembly by 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Cell Host Microbe. 2012;12:585–597. doi: 10.1016/j.chom.2012.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [80].Ma H, Zhao XL, Wang XY, Xie XW, Han JC, Guan W, et al. 2′,3′-cyclic nucleotide 3′-phosphodiesterases inhibit hepatitis B virus replication. PLoS One. 2013;8:e80769. doi: 10.1371/journal.pone.0080769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [81].De Angelis DA, Braun PE. 2′,3′-cyclic nucleotide 3′-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner. J Neurochem. 1996;67:943–951. doi: 10.1046/j.1471-4159.1996.67030943.x. [DOI] [PubMed] [Google Scholar]
  • [82].Carson JH, Barbarese E. Systems analysis of RNA trafficking in neural cells. Biol Cell. 2005;97:51–62. doi: 10.1042/BC20040083. [DOI] [PubMed] [Google Scholar]
  • [83].Zhang Z, Ottens AK, Golden EC, Hayes RL, Wang KKW. Using calmodulin-affinity capture to study the rat brain calmodulin binding proteome and its vulnerability to calpain and caspase proteolysis. Calcium Bind Proteins. 2006;2:125–134. [Google Scholar]
  • [84].Esposito C, Scrima M, Carotenuto A, Tedeschi A, Rovero P, D’Errico G, et al. Structures and micelle locations of the nonlipidated and lipidated C-terminal membrane anchor of 2′,3′-cyclic nucleotide-3′-phosphodiesterase. Biochemistry. 2008;47:308–319. doi: 10.1021/bi701474t. [DOI] [PubMed] [Google Scholar]
  • [85].De Angelis DA, Braun PE. Isoprenylation of brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase modulates cell morphology. J Neurosci Res. 1994;39:386–397. doi: 10.1002/jnr.490390405. [DOI] [PubMed] [Google Scholar]
  • [86].Agrawal HC, Sprinkle TJ, Agrawal D. 2′,3′-cyclic nucleotide-3′-phosphodiesterase in the central-nervous-system is fattyacylated by thioester linkage. J Biol Chem. 1990;265:11849–11853. [PubMed] [Google Scholar]
  • [87].De Angelis DA, Braun PE. Binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase to myelin: An in vitro study. J Neurochem. 1996;66:2523–2531. doi: 10.1046/j.1471-4159.1996.66062523.x. [DOI] [PubMed] [Google Scholar]
  • [88].Braun PE, De Angelis DA, Shtybel WW, Bernier L. Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. J Neurosci Res. 1991;30(3):540–544. doi: 10.1002/jnr.490300311. [DOI] [PubMed] [Google Scholar]
  • [89].Myllykoski M, Kursula P. Expression, purification, and initial characterization of different domains of recombinant mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an enigmatic enzyme from the myelin sheath. BMC Res Notes. 2010;3:1–7. doi: 10.1186/1756-0500-3-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [90].Bankston AN, Mandler MD, Feng Y. Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull. 2013;29:216–228. doi: 10.1007/s12264-013-1321-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES