Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 Oct 17;30(6):999–1009. doi: 10.1007/s12264-014-1475-7

Intermediate Charcot-Marie-Tooth disease

Lei Liu 1, Ruxu Zhang 1,
PMCID: PMC5562560  PMID: 25326399

Abstract

Charcot-Marie-Tooth (CMT) disease is a common neurogenetic disorder and its heterogeneity is a challenge for genetic diagnostics. The genetic diagnostic procedures for a CMT patient can be explored according to the electrophysiological criteria: very slow motor nerve conduction velocity (MNCV) (<15 m/s), slow MNCV (15–25 m/s), intermediate MNCV (25–45 m/s), and normal MNCV (>45 m/s). Based on the inheritance pattern, intermediate CMT can be divided into dominant (DI-CMT) and recessive types (RI-CMT). GJB1 is currently considered to be associated with X-linked DI-CMT, and MPZ, INF2, DNM2, YARS, GNB4, NEFL, and MFN2 are associated with autosomal DI-CMT. Moreover, GDAP1, KARS, and PLEKHG5 are associated with RI-CMT. Identification of these genes is not only important for patients and families but also provides new information about pathogenesis. It is hoped that this review will lead to a better understanding of intermediate CMT and provide a detailed diagnostic procedure for intermediate CMT.

Keywords: Charcot-Marie-Tooth disease, intermediate CMT, dominant type CMT, recessive type CMT, diagnostic procedure

References

  • [1].Patzko A, Shy ME. Update on Charcot-Marie-Tooth disease. Curr Neurol Neurosci Rep. 2011;11:78–88. doi: 10.1007/s11910-010-0158-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Berciano J, Sevilla T, Casasnovas C, Sivera R, Vilchez JJ, Infante J, et al. Guidelines for molecular diagnosis of Charcot-Marie-Tooth disease. Neurologia. 2012;27:169–178. doi: 10.1016/j.nrl.2011.04.015. [DOI] [PubMed] [Google Scholar]
  • [3].Siskind CE, Panchal S, Smith CO, Feely SM, Dalton JC, Schindler AB, et al. A Review of Genetic Counseling for Charcot Marie Tooth Disease (CMT) J Genet Couns. 2013;22:422–436. doi: 10.1007/s10897-013-9584-4. [DOI] [PubMed] [Google Scholar]
  • [4].Davis CJ, Bradley WG, Madrid R. The peroneal muscular atrophy syndrome: clinical, genetic, electrophysiological and nerve biopsy studies. I. Clinical, genetic and electrophysiological findings and classification. J Genet Hum. 1978;26:311–349. [PubMed] [Google Scholar]
  • [5].Reilly MM. Sorting out the inherited neuropathies. Pract Neurol. 2007;7:93–105. [PubMed] [Google Scholar]
  • [6].Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet. 2006;38:197–202. doi: 10.1038/ng1727. [DOI] [PubMed] [Google Scholar]
  • [7].Zuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet. 2005;37:289–294. doi: 10.1038/ng1514. [DOI] [PubMed] [Google Scholar]
  • [8].Verhoeven K, Villanova M, Rossi A, Malandrini A, De Jonghe P, Timmerman V. Localization of the gene for the intermediate form of Charcot-Marie-Tooth to chromosome 10q24.1-q25.1. Am J Hum Genet. 2001;69:889–894. doi: 10.1086/323742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Nakagawa S, Maeda S, Tsukihara T. Structural and functional studies of gap junction channels. Curr Opin Struct Biol. 2010;20:423–430. doi: 10.1016/j.sbi.2010.05.003. [DOI] [PubMed] [Google Scholar]
  • [10].Kleopa KA, Abrams CK, Scherer SS. How do Mutations in GJB1 Cause X-linked Charcot-Marie-Tooth Disease? Brain Res. 2012;1487:198–205. doi: 10.1016/j.brainres.2012.03.068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Shy ME, Siskind C, Swan ER, Krajewski KM, Doherty T, Fuerst DR, et al. CMT1X phenotypes represent loss of GJB1 gene function. Neurology. 2007;68:849–855. doi: 10.1212/01.wnl.0000256709.08271.4d. [DOI] [PubMed] [Google Scholar]
  • [12].Nicholson G, Nash J. Intermediate nerve conduction velocities define X-linked Charcot-Marie-Tooth neuropathy families. Neurology. 1993;43:2558–2564. doi: 10.1212/WNL.43.12.2558. [DOI] [PubMed] [Google Scholar]
  • [13].Birouk N, LeGuern E, Maisonobe T, Rouger H, Gouider R, Tardieu S, et al. X-linked Charcot-Marie-Tooth disease with connexin 32 mutations: clinical and electrophysiologic study. Neurology. 1998;50:1074–1082. doi: 10.1212/WNL.50.4.1074. [DOI] [PubMed] [Google Scholar]
  • [14].Li XN, Li XB, Huang SHX, Zi XH, Liu L, Zhan YJ, et al. Correlation between clinical and electrophysiological characteristics in 59 patients with Charcot-Marie-Tooth disease type 1X. Zhonghua Shen Jing Ke Za Zhi. 2014;47:84–89. [Google Scholar]
  • [15].Shy ME, Patzko A. Axonal Charcot-Marie-Tooth disease. Curr Opin Neurol. 2011;24:475–483. doi: 10.1097/WCO.0b013e32834aa331. [DOI] [PubMed] [Google Scholar]
  • [16].Hayasaka K, Himoro M, Wang Y, Takata M, Minoshima S, Shimizu N, et al. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ) Genomics. 1993;17:755–758. doi: 10.1006/geno.1993.1400. [DOI] [PubMed] [Google Scholar]
  • [17].Lemke G. Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron. 2008;60:403. doi: 10.1016/j.neuron.2008.10.034. [DOI] [PubMed] [Google Scholar]
  • [18].Lemke G, Axel R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell. 1985;40:501–508. doi: 10.1016/0092-8674(85)90198-9. [DOI] [PubMed] [Google Scholar]
  • [19].Besancon R, Prost AL, Konecny L, Latour P, Petiot P, Boutrand L, et al. Alternative exon 3 splicing of the human major protein zero gene in white blood cells and peripheral nerve tissue. Febs Lett. 1999;457:339–342. doi: 10.1016/S0014-5793(99)01069-8. [DOI] [PubMed] [Google Scholar]
  • [20].Greenfield S, Brostoff S, Eylar EH, Morell P. Protein composition of myelin of the peripheral nervous system. J Neurochem. 1973;20:1207–1216. doi: 10.1111/j.1471-4159.1973.tb00089.x. [DOI] [PubMed] [Google Scholar]
  • [21].Lin KP, Soong BW, Chang MH, Chen WT, Lin JL, Lee WJ, et al. Clinical and cellular characterization of two novel MPZ mutations, p.I135M and p.Q187PfsX63. Clin Neurol Neurosurg. 2012;114:124–129. doi: 10.1016/j.clineuro.2011.09.015. [DOI] [PubMed] [Google Scholar]
  • [22].D’Urso D, Brophy PJ, Staugaitis SM, Gillespie CS, Frey AB, Stempak JG, et al. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron. 1990;4:449–460. doi: 10.1016/0896-6273(90)90057-M. [DOI] [PubMed] [Google Scholar]
  • [23].Ramirez JD, Barnes PR, Mills KR, Bennett DL. Intermediate Charcot-Marie-Tooth disease due to a novel Trp101Stop myelin protein zero mutation associated with debilitating neuropathic pain. Pain. 2012;153:1763–1768. doi: 10.1016/j.pain.2012.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Banchs I, Casasnovas C, Montero J, Volpini V, Martinez-Matos JA. Charcot-Marie-Tooth disease with intermediate conduction velocities caused by a novel mutation in the MPZ gene. Muscle Nerve. 2010;42:184–188. doi: 10.1002/mus.21643. [DOI] [PubMed] [Google Scholar]
  • [25].Schneider-Gold C, Kotting J, Epplen JT, Gold R, Gerding WM. Unusual Charcot-Marie-Tooth phenotype due to a mutation within the intracellular domain of myelin protein zero. Muscle Nerve. 2010;41:550–554. doi: 10.1002/mus.21523. [DOI] [PubMed] [Google Scholar]
  • [26].Liu L, Li X, Zi X, Huang S, Zhan Y, Jiang M, et al. Two novel MPZ mutations in Chinese CMT patients. J Peripher Nerv Syst. 2013;18:256–260. doi: 10.1111/jns5.12040. [DOI] [PubMed] [Google Scholar]
  • [27].Zhang R, Tang B. Classification and molecular diagnostic procedure for Chacort-Marie-Tooth disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012;29:553–557. doi: 10.3760/cma.j.issn.1003-9406.2012.05.011. [DOI] [PubMed] [Google Scholar]
  • [28].Rodriguez PQ, Lohkamp B, Celsi G, Mache CJ, Auer-Grumbach M, Wernerson A, et al. Novel INF2 mutation p. L77P in a family with glomerulopathy and Charcot-Marie-Tooth neuropathy. Pediatr Nephrol. 2013;28:339–343. doi: 10.1007/s00467-012-2299-1. [DOI] [PubMed] [Google Scholar]
  • [29].Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A, et al. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol. 2007;177:1051–1061. doi: 10.1083/jcb.200610108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Frank M. MAL, a proteolipid in glycosphingolipid enriched domains: functional implications in myelin and beyond. Prog Neurobiol. 2000;60:531–544. doi: 10.1016/S0301-0082(99)00039-8. [DOI] [PubMed] [Google Scholar]
  • [31].Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med. 2011;365:2377–2388. doi: 10.1056/NEJMoa1109122. [DOI] [PubMed] [Google Scholar]
  • [32].Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol. 2010;11:62–74. doi: 10.1038/nrm2816. [DOI] [PubMed] [Google Scholar]
  • [33].Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:239–245. doi: 10.1681/ASN.2010050518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–76. doi: 10.1038/ng.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Park HJ, Kim HJ, Hong YB, Nam SH, Chung KW, Choi BO. J Peripher Nerv Syst. 2014. A novel INF2 mutation in a Korean family with autosomal dominant intermediate Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. [DOI] [PubMed] [Google Scholar]
  • [36].Caridi G, Lugani F, Dagnino M, Gigante M, Iolascon A, Falco M, et al. Novel INF2 mutations in an Italian cohort of patients with focal segmental glomerulosclerosis, renal failure and Charcot-Marie-Tooth neuropathy. Nephrol Dial Transplant. 2014;29(Suppl4):v80–86. doi: 10.1093/ndt/gfu071. [DOI] [PubMed] [Google Scholar]
  • [37].Mathis S, Funalot B, Boyer O, Lacroix C, Marcorelles P, Magy L, et al. Neuropathologic characterization of INF2-related Charcot-Marie-Tooth disease: evidence for a Schwann cell actinopathy. J Neuropathol Exp Neurol. 2014;73:223–233. doi: 10.1097/NEN.0000000000000047. [DOI] [PubMed] [Google Scholar]
  • [38].Muhlberg AB, Warnock DE, Schmid SL. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 1997;16:6676–6683. doi: 10.1093/emboj/16.22.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Barylko B, Binns D, Lin KM, Atkinson MA, Jameson DM, Yin HL, et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J Biol Chem. 1998;273:3791–3797. doi: 10.1074/jbc.273.6.3791. [DOI] [PubMed] [Google Scholar]
  • [40].Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol. 2004;6:335–342. doi: 10.1038/ncb1112. [DOI] [PubMed] [Google Scholar]
  • [41].Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med. 2006;8(1–2):217–242. doi: 10.1385/NMM:8:1-2:217. [DOI] [PubMed] [Google Scholar]
  • [42].Claeys KG, Zuchner S, Kennerson M, Berciano J, Garcia A, Verhoeven K, et al. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain. 2009;132:1741–1752. doi: 10.1093/brain/awp115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Bitoun M, Stojkovic T, Prudhon B, Maurage CA, Latour P, Vermersch P, et al. A novel mutation in the dynamin 2 gene in a Charcot-Marie-Tooth type 2 patient: clinical and pathological findings. Neuromuscul Disord. 2008;18:334–338. doi: 10.1016/j.nmd.2008.01.005. [DOI] [PubMed] [Google Scholar]
  • [44].Jordanova A, Thomas FP, Guergueltcheva V, Tournev I, Gondim FA, Ishpekova B, et al. Dominant intermediate Charcot-Marie-Tooth type C maps to chromosome 1p34–p35. Am J Hum Genet. 2003;73:1423–1430. doi: 10.1086/379792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Stum M, McLaughlin HM, Kleinbrink EL, Miers KE, Ackerman SL, Seburn KL, et al. An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol Cell Neurosci. 2011;46:432–443. doi: 10.1016/j.mcn.2010.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Schimmel PR, Soll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  • [47].Storkebaum E, Leitao-Goncalves R, Godenschwege T, Nangle L, Mejia M, Bosmans I, et al. Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot-Marie-Tooth neuropathy. Proc Natl Acad Sci U S A. 2009;106:11782–11787. doi: 10.1073/pnas.0905339106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Engelhardt S, Rochais F. G proteins: more than transducers of receptor-generated signals? Circ Res. 2007;100:1109–1111. doi: 10.1161/01.RES.0000266971.15127.e8. [DOI] [PubMed] [Google Scholar]
  • [49].Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC, et al. Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet. 2013;92:422–430. doi: 10.1016/j.ajhg.2013.01.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Jordanova A, De Jonghe P, Boerkoel CF, Takashima H, De Vriendt E, Ceuterick C, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain. 2003;126:590–597. doi: 10.1093/brain/awg059. [DOI] [PubMed] [Google Scholar]
  • [51].Lee MK, Cleveland DW. Neuronal intermediate filaments. Annu Rev Neurosci. 1996;19:187–217. doi: 10.1146/annurev.ne.19.030196.001155. [DOI] [PubMed] [Google Scholar]
  • [52].Arbuthnott ER, Boyd IA, Kalu KU. Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. J Physiol. 1980;308:125–57. doi: 10.1113/jphysiol.1980.sp013465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Sasaki T, Gotow T, Shiozaki M, Sakaue F, Saito T, Julien JP, et al. Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum Mol Genet. 2006;15:943–952. doi: 10.1093/hmg/ddl011. [DOI] [PubMed] [Google Scholar]
  • [54].Tradewell ML, Durham HD, Mushynski WE, Gentil BJ. Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol. 2009;68:642–652. doi: 10.1097/NEN.0b013e3181a5deeb. [DOI] [PubMed] [Google Scholar]
  • [55].Zhai J, Lin H, Julien JP, Schlaepfer WW. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet. 2007;16:3103–3116. doi: 10.1093/hmg/ddm272. [DOI] [PubMed] [Google Scholar]
  • [56].Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov V F, Dadali EL, Oparin RB, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet. 2000;67:37–46. doi: 10.1086/302962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].De Jonghe P, Mersivanova I, Nelis E, Del FJ, Martin JJ, Van Broeckhoven C, et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neurol. 2001;49:245–249. doi: 10.1002/1531-8249(20010201)49:2&#x0003c;245::AID-ANA45&#x0003e;3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • [58].Malandrini A, Ceuterick C, Villanov M, Gambelli S, Berti G, Rossi A, et al. Ultrastructural findings in the peripheral nerve in a family with the intermediate form of Charcot-Marie-Tooth disease. J Submicrosc Cytol Pathol. 2001;33:59–63. [PubMed] [Google Scholar]
  • [59].Banchs I, Casasnovas C, Alberti A, De Jorge L, Povedano M, Montero J, et al. Diagnosis of Charcot-Marie-Tooth disease. J Biomed Biotechnol. 2009;2009:985415. doi: 10.1155/2009/985415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Ben OK, Hentati F, Lennon F, Ben HC, Blel S, Roses AD, et al. Linkage of a locus (CMT4A) for autosomal recessive Charcot-Marie-Tooth disease to chromosome 8q. Hum Mol Genet. 1993;2:1625–1628. doi: 10.1093/hmg/2.10.1625. [DOI] [PubMed] [Google Scholar]
  • [61].Marco A, Cuesta A, Pedrola L, Palau F, Marin I. Evolutionary and structural analyses of GDAP1, involved in Charcot-Marie-Tooth disease, characterize a novel class of glutathione transferase-related genes. Mol Biol Evol. 2004;21:176–187. doi: 10.1093/molbev/msh013. [DOI] [PubMed] [Google Scholar]
  • [62].Cuesta A, Pedrola L, Sevilla T, Garcia-Planells J, Chumillas MJ, Mayordomo F, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet. 2002;30:22–25. doi: 10.1038/ng798. [DOI] [PubMed] [Google Scholar]
  • [63].Wagner KM, Ruegg M, Niemann A, Suter U. Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor. PLoS One. 2009;4:e5160. doi: 10.1371/journal.pone.0005160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [64].Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170:1067–1078. doi: 10.1083/jcb.200507087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Pedrola L, Espert A, Valdes-Sanchez T, Sanchez-Piris M, Sirkowski EE, Scherer SS, et al. Cell expression of GDAP1 in the nervous system and pathogenesis of Charcot-Marie-Tooth type 4A disease. J Cell Mol Med. 2008;12:679–689. doi: 10.1111/j.1582-4934.2007.00158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Noack R, Frede S, Albrecht P, Henke N, Pfeiffer A, Knoll K, et al. Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet. 2012;21:150–162. doi: 10.1093/hmg/ddr450. [DOI] [PubMed] [Google Scholar]
  • [67].Baxter RV, Ben OK, Rochelle JM, Stajich JE, Hulette C, Dew-Knight S, et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet. 2002;30:21–22. doi: 10.1038/ng796. [DOI] [PubMed] [Google Scholar]
  • [68].Cassereau J, Chevrollier A, Gueguen N, Malinge MC, Letournel F, Nicolas G, et al. Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K) Neurogenetics. 2009;10:145–150. doi: 10.1007/s10048-008-0166-9. [DOI] [PubMed] [Google Scholar]
  • [69].Kabzinska D, Drac H, Rowinska-Marcinska K, Fidzianska A, Kochanski A, Hausmanowa-Petrusewicz I. Early onset Charcot-Marie-Tooth disease caused by a homozygous Leu239Phe mutation in the GDAP1 gene. Acta Myol. 2006;25:34–37. [PubMed] [Google Scholar]
  • [70].Zimon M, Baets J, Fabrizi G, Jaakkola E, Kabzinska D, Pilch J, et al. Dominant GDAP1 mutations cause predominantly mild CMT phenotypes. Neurology. 2011;77:540–548. doi: 10.1212/WNL.0b013e318228fc70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Senderek J, Bergmann C, Ramaekers VT, Nelis E, Bernert G, Makowski A, et al. Mutations in the ganglioside-induced differentiation-associated protein-1 (GDAP1) gene in intermediate type autosomal recessive Charcot-Marie-Tooth neuropathy. Brain. 2003;126:642–649. doi: 10.1093/brain/awg068. [DOI] [PubMed] [Google Scholar]
  • [72].Tolkunova E, Park H, Xia J, King MP, Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem. 2000;275:35063–35069. doi: 10.1074/jbc.M006265200. [DOI] [PubMed] [Google Scholar]
  • [73].McLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, et al. Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet. 2010;87:560–566. doi: 10.1016/j.ajhg.2010.09.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [74].Latour P, Thauvin-Robinet C, Baudelet-Mery C, Soichot P, Cusin V, Faivre L, et al. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet. 2010;86:77–82. doi: 10.1016/j.ajhg.2009.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75].Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003;72:1293–1299. doi: 10.1086/375039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Maystadt I, Rezsohazy R, Barkats M, Duque S, Vannuffel P, Remacle S, et al. The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am J Hum Genet. 2007;81:67–76. doi: 10.1086/518900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77].Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol. 2007;368:1307–1320. doi: 10.1016/j.jmb.2007.02.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [78].Azzedine H, Zavadakova P, Plante-Bordeneuve V, Vaz PM, Pinto N, Bartesaghi L, et al. PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease. Hum Mol Genet. 2013;22:4224–4232. doi: 10.1093/hmg/ddt274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Kim HJ, Hong YB, Park JM, Choi YR, Kim YJ, Yoon BR, et al. Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis. 2013;8:104. doi: 10.1186/1750-1172-8-104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [80].Braathen GJ, Sand JC, Lobato A, Hoyer H, Russell MB. MFN2 point mutations o ccur in 3.4% of Charcot-Marie-Tooth families. An investigation of 232 Norwegian CMT families. BMC Med Genet. 2010;11:48. doi: 10.1186/1471-2350-11-48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [81].Miller L, Saporta A, Sottile S, Siskind C, Feely S, Shy M. Strategy for genetic testing in Charcot-Marie-Disease. Acta Myol. 2011;30:109–116. [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES