Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2013 Oct 17;30(1):33–42. doi: 10.1007/s12264-013-1380-5

Genes in the serotonin pathway are associated with bipolar affective disorder in a Han Chinese population

Bo Xiang 1, Zhenxing Yang 1, Yin Lin 1,2,3, Lijie Guan 3, Xuan Li 3, Wei Deng 1,2, Zeyu Jiang 3, Guohui Lao 3, Qiang Wang 1,2, Xiaoyu Hao 3, Xiang Liu 2, Yingcheng Wang 2, Liansheng Zhao 1, Xiaohong Ma 1,2, Tao Li 1,2, Liping Cao 3,, Xun Hu 1,4,
PMCID: PMC5562572  PMID: 24136241

Abstract

Serotonin plays an important role in mood regulation, but the involvement of serotonin pathway genes in the development of bipolar I disorder (BP-I), a mood disorder, is not clear. We selected 21 singlenucleotide polymorphisms (SNPs) within the HTR2A gene, 8 within the SLC6A4 gene and 23 within the TPH2 gene for genotyping using the GoldenGate genotyping assay. A total of 375 patients with BP-I and 475 normal controls were recruited. Two out of 21 SNPs (rs1475196 and rs9567747) in the HTR2A gene and 1/23 SNPs (rs17110566) in the TPH2 gene were significantly associated with BP-I, both genotype-wise and allele-wise. Furthermore, a specific haplotype in the HTR2A gene showed a significant association with BP-I. Our results indicate that the HTR2A and TPH2 genes in the serotonin pathway play important roles in susceptibility to BP-I.

Keywords: bipolar affective disorder, serotonin pathway, TPH2, HTR2A, SLC6A4

Contributor Information

Liping Cao, Email: coolliping@163.com.

Xun Hu, Email: hxxhu99@163.com.

References

  • [1].Cowen P, Harrison P, Burns T. OUP Oxford. 2012. Shorter Oxford Textbook of Psychiatry. [Google Scholar]
  • [2].Kessler RC, Rubinow D, Holmes C, Abelson J, Zhao S. The epidemiology of DSM-III-R bipolar I disorder in a general population survey. Psychol Med. 1997;27:1079–1089. doi: 10.1017/S0033291797005333. [DOI] [PubMed] [Google Scholar]
  • [3].McGuffin P, Katz R, Watkins S, Rutherford J. A hospitalbased twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry. 1996;53:129. doi: 10.1001/archpsyc.1996.01830020047006. [DOI] [PubMed] [Google Scholar]
  • [4].McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60:497. doi: 10.1001/archpsyc.60.5.497. [DOI] [PubMed] [Google Scholar]
  • [5].Taylor L, Faraone SV, Tsuang MT. Family, twin, and adoption studies of bipolar disease. Curr Psychiatry Rep. 2002;4:130–133. doi: 10.1007/s11920-002-0046-1. [DOI] [PubMed] [Google Scholar]
  • [6].Bellivier F, Henry C, Szöke A, Schürhoff F, Nosten-Bertrand M, Feingold J, et al. Serotonin transporter gene polymorphisms in patients with unipolar or bipolar depression. Neurosci Lett. 1998;255:143–146. doi: 10.1016/S0304-3940(98)00677-6. [DOI] [PubMed] [Google Scholar]
  • [7].Brunner HG, Nelen M, Breakefield X, Ropers H, Van Oost B. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262:578–580. doi: 10.1126/science.8211186. [DOI] [PubMed] [Google Scholar]
  • [8].Viollet C, Prevost G, Maubert E, Faivre-Bauman A, Gardette R, Kordon C, et al. Molecular pharmacology of somatostatin receptors. Fundam Clin Pharmacol. 2009;9:107–113. doi: 10.1111/j.1472-8206.1995.tb00269.x. [DOI] [PubMed] [Google Scholar]
  • [9].Lucki I. The spectrum of behaviors influenced by serotonin. Bio Psychiatry. 1998;44:151–162. doi: 10.1016/S0006-3223(98)00139-5. [DOI] [PubMed] [Google Scholar]
  • [10].Meltzer HY. Serotonergic dysfunction in depression. Br J Psychiatry. 1989;155:29–31. [PubMed] [Google Scholar]
  • [11].Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299:76. doi: 10.1126/science.1078197. [DOI] [PubMed] [Google Scholar]
  • [12].Zill P, Baghai T, Zwanzger P, Schüle C, Eser D, Rupprecht R, et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry. 2004;9:1030–1036. doi: 10.1038/sj.mp.4001525. [DOI] [PubMed] [Google Scholar]
  • [13].Harvey M, Shink E, Tremblay M, Gagne B, Raymond C, Labbe M, et al. Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry. 2004;9:980–981. doi: 10.1038/sj.mp.4001557. [DOI] [PubMed] [Google Scholar]
  • [14].Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron. 2005;45:11–16. doi: 10.1016/j.neuron.2004.12.014. [DOI] [PubMed] [Google Scholar]
  • [15].Zhou Z, Roy A, Lipsky R, Kuchipudi K, Zhu G, Taubman J, et al. Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch Gen Psychiatry. 2005;62:1109. doi: 10.1001/archpsyc.62.10.1109. [DOI] [PubMed] [Google Scholar]
  • [16].Harvey M, Gagné B, Labbé M, Barden N. Polymorphisms in the neuronal isoform of tryptophan hydroxylase 2 are associated with bipolar disorder in French Canadian pedigrees. Psychiatr Genet. 2007;17:17–22. doi: 10.1097/YPG.0b013e3280111877. [DOI] [PubMed] [Google Scholar]
  • [17].Lopez VA, Detera-Wadleigh S, Cardona I. Nested association between genetic variation in tryptophan hydroxylase II, bipolar affective disorder, and suicide attempts. Bio Psychiatry. 2007;61:181. doi: 10.1016/j.biopsych.2006.03.028. [DOI] [PubMed] [Google Scholar]
  • [18].Pandey GN, Pandey SC, Dwivedi Y, Sharma RP, Janicak PG, Davis JM. Platelet serotonin-2A receptors: a potential biological marker for suicidal behavior. Am J Psychiatry. 1995;152:850–855. doi: 10.1176/ajp.152.6.850. [DOI] [PubMed] [Google Scholar]
  • [19].Biegon A, Weizman A, Karp L, Ram A, Tiano S, Wolff M. Serotonin 5-HT2 receptor binding on blood platelets-a peripheral marker for depression? Life Sci. 1987;41:2485–2492. doi: 10.1016/0024-3205(87)90675-8. [DOI] [PubMed] [Google Scholar]
  • [20].Sharpley A, Gregory C, Solomon R, Cowen P. Slow wave sleep and 5-HT2 receptor sensitivity during maintenance tricyclic antidepressant treatment. J Affect Disord. 1990;19:273–277. doi: 10.1016/0165-0327(90)90105-H. [DOI] [PubMed] [Google Scholar]
  • [21].Staner L, Kempenaers C, Simonnet MP, Fransolet L, Mendlewicz J. 5-HT2 receptor antagonism and slow-wave sleep in major depression. Acta Psychiatr Scand. 1992;86:133–137. doi: 10.1111/j.1600-0447.1992.tb03241.x. [DOI] [PubMed] [Google Scholar]
  • [22].Arango V, Underwood MD, Mann JJ. Alterations in monoamine receptors in the brain of suicide victims. J Clin Psychopharmacol. 1992;12(2Suppl):8S–12S. [PubMed] [Google Scholar]
  • [23].Biver F, Wikler D, Lotstra F, Damhaut P, Goldman S, Mendlewicz J. Serotonin 5-HT2 receptor imaging in major depression: focal changes in orbito-insular cortex. Br J Psychiatry. 1997;171:444–448. doi: 10.1192/bjp.171.5.444. [DOI] [PubMed] [Google Scholar]
  • [24].Stanley M, Mann JJ. Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet. 1983;321:214–216. doi: 10.1016/S0140-6736(83)92590-4. [DOI] [PubMed] [Google Scholar]
  • [25].Badenhop R, Moses M, Scimone A, Mitchell P, Ewen K, Rosso A, et al. A genome screen of a large bipolar affective disorder pedigree supports evidence for a susceptibility locus on chromosome 13q. Mol Psychiatry. 2001;6:396. doi: 10.1038/sj.mp.4000887. [DOI] [PubMed] [Google Scholar]
  • [26].Badenhop R, Moses M, Scimone A, Mitchell P, Ewen-White K, Rosso A, et al. A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry. 2002;7:851. doi: 10.1038/sj.mp.4001114. [DOI] [PubMed] [Google Scholar]
  • [27].Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Baum A, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2007;13:197–207. doi: 10.1038/sj.mp.4002012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Sklar P, Smoller J, Fan J, Ferreira M, Perlis R, Chambert K, et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13:558–569. doi: 10.1038/sj.mp.4002151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Badner J, Gershon E. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7:405–411. doi: 10.1038/sj.mp.4001012. [DOI] [PubMed] [Google Scholar]
  • [31].Le-Niculescu H, Patel S, Bhat M, Kuczenski R, Faraone S, Tsuang M, et al. Convergent functional genomics of genomewide association data for bipolar disorder: Comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2008;150:155–181. doi: 10.1002/ajmg.b.30887. [DOI] [PubMed] [Google Scholar]
  • [32].Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527. doi: 10.1126/science.274.5292.1527. [DOI] [PubMed] [Google Scholar]
  • [33].Quick MW. Regulating the conducting states of a mammalian serotonin transporter. Neuron. 2003;40:537. doi: 10.1016/S0896-6273(03)00605-6. [DOI] [PubMed] [Google Scholar]
  • [34].Ellis PM, Salmond C. Is platelet imipramine binding reduced in depression? A meta-analysis. Bio Psychiatry. 1994;36:292–299. doi: 10.1016/0006-3223(94)90626-2. [DOI] [PubMed] [Google Scholar]
  • [35].Paul SM, Rehavi M, Skolnick P, Ballenger JC, Goodwin FK. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ‘transporter’. Arch Gen Psychiatry. 1981;38:1315. doi: 10.1001/archpsyc.1981.01780370017001. [DOI] [PubMed] [Google Scholar]
  • [36].Stanley M, Virgilio J, Gershon S. Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science. 1982;216(4552):1337–1339. doi: 10.1126/science.7079769. [DOI] [PubMed] [Google Scholar]
  • [37].Verheyen G, Jakovljević M, Ivezić S, Raeymaekers P, Broeckhoven CV. Association analysis of the 5-HT2C receptor and 5-HT transporter genes in bipolar disorder. Am J Med Genet. 1998;74:504–506. [PubMed] [Google Scholar]
  • [38].Collier DA, Arranz MJ, Sham P, Battersby S, Vallada H, Gill P, et al. The serotonin transporter is a potential susceptibility factor for bipolar affective disorder. Neuroreport. 1996;7:1675. doi: 10.1097/00001756-199607080-00030. [DOI] [PubMed] [Google Scholar]
  • [39].Sun HS, Wang HC, Lai TJ, Wang TJ, Li CM. Sequence variants and haplotype analysis of serotonin transporter gene and association with bipolar affective disorder in Taiwan. Pharmacogenet Genomics. 2004;14:173–179. doi: 10.1097/00008571-200403000-00005. [DOI] [PubMed] [Google Scholar]
  • [40].Ho LW, Furlong RA, Rubinsztein JS, Walsh C, Paykel ES, Rubinsztein DC. Genetic associations with clinical characteristics in bipolar affective disorder and recurrent unipolar depressive disorder. Am J Med Genet. 2000;96:36–42. doi: 10.1002/(SICI)1096-8628(20000207)96:1<36::AID-AJMG8>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • [41].Savitz J, Van Der Merwe L, Ramesar R. Personality endophenotypes for bipolar affective disorder: a family-based genetic association analysis. Genes Brain Behav. 2008;7:869–876. doi: 10.1111/j.1601-183X.2008.00426.x. [DOI] [PubMed] [Google Scholar]
  • [42].First MB, Gibbon M. Amer Psychiatric Pub Incorporated. 1997. User’s Quide for the Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version. [Google Scholar]
  • [43].Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbour Laboratory Press; 2001. [Google Scholar]
  • [44].Marija J, Norušis SI. Prentice Hall. 2004. SPSS 12.0 guide to data analysis; p. 637. [Google Scholar]
  • [45].Bondar J, Putter J. Simultaneous Statistical Inference. Technometrics. 1968;10:415–416. doi: 10.1080/00401706.1968.10490583. [DOI] [Google Scholar]
  • [46].Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res. 2006;1085:11–18. doi: 10.1016/j.brainres.2006.02.047. [DOI] [PubMed] [Google Scholar]
  • [47].Dawson E, Parfitt E, Roberts Q, Daniels J, Lim L, Sham P, et al. Linkage studies of bipolar disorder in the region of the Darier’s disease gene on chromosome 12q23-24.1. Am J Med Genet. 2005;60:94–102. doi: 10.1002/ajmg.1320600203. [DOI] [PubMed] [Google Scholar]
  • [48].Ewald H, Degn B, Mors O, Kruse T. Significant linkage between bipolar affective disorder and chromosome 12q24. Psychiatr Genet. 1998;8(3):131–140. doi: 10.1097/00041444-199800830-00002. [DOI] [PubMed] [Google Scholar]
  • [49].Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B, et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23-q24. Am J Med Genet. 1999;88:567–587. doi: 10.1002/(SICI)1096-8628(19991015)88:5<567::AID-AJMG24>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • [50].Cichon S, Winge I, Mattheisen M, Georgi A, Karpushova A, Freudenberg J, et al. Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5′-region are associated with bipolar affective disorder. Hum Mol Genet. 2008;17:87–97. doi: 10.1093/hmg/ddm286. [DOI] [PubMed] [Google Scholar]
  • [51].Lin YMJ, Chao SC, Chen TM, Lai TJ, Chen JS, Sun HS. Association of functional polymorphisms of the human tryptophan hydroxylase 2 gene with risk for bipolar disorder in Han Chinese. Arch Gen Psychiatry. 2007;64:1015. doi: 10.1001/archpsyc.64.9.1015. [DOI] [PubMed] [Google Scholar]
  • [52].Vincent JB, Masellis M, Lawrence J, Choi V, Gurling HMD, Parikh SV, et al. Genetic association analysis of serotonin system genes in bipolar affective disorder. Am J Psychiatry. 1999;156:136–138. doi: 10.1176/ajp.156.1.136. [DOI] [PubMed] [Google Scholar]
  • [53].Chee I, Lee S, Kim J, Wang S, Shin Y, Shin S, et al. 5-HT2A receptor gene promoter polymorphism-1438A/G and bipolar disorder. Psychiatr Genet. 2001;11:111–114. doi: 10.1097/00041444-200109000-00001. [DOI] [PubMed] [Google Scholar]
  • [54].Bonnier B, Gorwood P, Hamon M, Sarfati Y, Boni C, Hardy-Bayle MC. Association of 5-HT2A receptor gene polymorphism with major affective disorders: the case of a subgroup of bipolar disorder with low suicide risk. Bio Psychiatry. 2002;51:762–765. doi: 10.1016/S0006-3223(01)01228-8. [DOI] [PubMed] [Google Scholar]
  • [55].McAuley EZ, Fullerton JM, Blair IP, Donald JA, Mitchell PB, Schofield PR. Association between the serotonin 2A receptor gene and bipolar affective disorder in an Australian cohort. Psychiatr Genet. 2009;19:244. doi: 10.1097/YPG.0b013e32832ceea9. [DOI] [PubMed] [Google Scholar]
  • [56].Murphy V, Mynett-Johnson L, Claffey E, Shields D, McKeon P. No association between 5HT-2A and bipolar disorder irrespective of genomic imprinting. Am J Med Genet. 2001;105:422–425. doi: 10.1002/ajmg.1435. [DOI] [PubMed] [Google Scholar]
  • [57].Gutiérrez B, Bertranpetit J, Collier D, Arranz MJ, Vallès V, Guillamat R, et al. Genetic variation of the 5-HT 2A receptor gene and bipolar affective disorder. Hum Genet. 1997;100:582–584. doi: 10.1007/s004390050556. [DOI] [PubMed] [Google Scholar]
  • [58].Massat I, Souery D, Lipp O, Blairy S, Papadimitriou G, Dikeos D, et al. A European multicenter association study of HTR2A receptor polymorphism in bipolar affective disorder. Am J Med Genet. 2000;96:136–140. doi: 10.1002/(SICI)1096-8628(20000403)96:2<136::AID-AJMG2>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • [59].Ogilvie A, Battersby S, Fink G, Harmar A, Goodwin G, Bubb V, et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet. 1996;347:731–733. doi: 10.1016/S0140-6736(96)90079-3. [DOI] [PubMed] [Google Scholar]
  • [60].Rees M, Norton N, Jones I, McCandless F, Scourfield J, Holmans P, et al. Association studies of bipolar disorder at the human serotonin transporter gene (hSERT; 5HTT) Mol Psychiatry. 1997;2:398–402. doi: 10.1038/sj.mp.4000256. [DOI] [PubMed] [Google Scholar]
  • [61].Mundo E, Walker M, Tims H, Macciardi F, Kennedy JL. Lack of linkage disequilibrium between serotonin transporter protein gene (SLC6A4) and bipolar disorder. Am J Med Genet. 2000;96:379–383. doi: 10.1002/1096-8628(20000612)96:3<379::AID-AJMG27>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • [62].Gutiérrez B, Arranz MJ, Collier DA, Vallès V, Guillamat R, Bertranpetit J, et al. Serotonin transporter gene and risk for bipolar affective disorder: an association study in a Spanish population. Bio Psychiatry. 1998;43:843–847. doi: 10.1016/S0006-3223(97)00540-4. [DOI] [PubMed] [Google Scholar]
  • [63].MacCabe JH, Lambe MP, Cnattingius S, Sham PC, David AS, Reichenberg A, et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br J Psychiatry. 2010;196:109–115. doi: 10.1192/bjp.bp.108.060368. [DOI] [PubMed] [Google Scholar]
  • [64].Sørensen HJ, Sæbye D, Urfer-Parnas A, Mortensen EL, Parnas J. Premorbid intelligence and educational level in bipolar and unipolar disorders: A Danish draft board study. J Affect Disord. 2012;136(3):1188–1191. doi: 10.1016/j.jad.2011.12.007. [DOI] [PubMed] [Google Scholar]
  • [65].Burgess B, Curtis-Downes D, Gibson RC. Education and employment levels among Jamaican patients newly diagnosed with schizophrenia and bipolar disorder. Int J Soc Psychiatry. 2013;59(3):247–253. doi: 10.1177/0020764011433638. [DOI] [PubMed] [Google Scholar]
  • [66].Meyer TD, Krumm-Merabet C. Academic performance and expectations for the future in relation to a vulnerability marker for bipolar disorders: The hypomanic temperament. Pers Individ Dif. 2003;35:785–796. doi: 10.1016/S0191-8869(02)00283-0. [DOI] [Google Scholar]
  • [67].Savitz JB, Solms M, Ramesar RS. Neurocognitive function as an endophenotype for genetic studies of bipolar affective disorder. Neuromolecular Med. 2005;7:275–286. doi: 10.1385/NMM:7:4:275. [DOI] [PubMed] [Google Scholar]
  • [68].Cannon M, Jones P, Huttunen MO, Tanskanen A, Huttunen T, Rabe-Hesketh S, et al. School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Arch Gen Psychiatry. 1999;56:457. doi: 10.1001/archpsyc.56.5.457. [DOI] [PubMed] [Google Scholar]
  • [69].Osler M, Lawlor DA, Nordentoft M. Cognitive function in childhood and early adulthood and hospital admission for schizophrenia and bipolar disorders in Danish men born in 1953. Schizophrenia Res. 2007;92:132. doi: 10.1016/j.schres.2007.01.009. [DOI] [PubMed] [Google Scholar]
  • [70].Reichenberg A, Weiser M, Rapp MA, Rabinowitz J, Caspi A, Schmeidler J, et al. Elaboration on premorbid intellectual performance in schizophrenia: premorbid intellectual decline and risk for schizophrenia. Arch Gen Psychiatry. 2005;62:1297. doi: 10.1001/archpsyc.62.12.1297. [DOI] [PubMed] [Google Scholar]
  • [71].Tiihonen J, Haukka J, Henriksson M, Cannon M, Kieseppä T, Laaksonen I, et al. Premorbid intellectual functioning in bipolar disorder and schizophrenia: results from a cohort study of male conscripts. Am J Psychiatry. 2005;162:1904–1910. doi: 10.1176/appi.ajp.162.10.1904. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES