Abstract
Erythropoietin (EPO) and granulocyte colonystimulating factor (G-CSF) are likely to play broad roles in the brain. We investigated the effects of combination therapy with EPO and G-CSF in hypoxicischemic brain injury during the acute, subacute, and chronic phases. A total of 79 C57BL/6 mice with hypoxic-ischemic brain injury were randomly assigned acute (days 1–5), subacute (days 11–15) and chronic (days 28–32) groups. All of them were treated with G-CSF (250 μg/kg) and EPO (5 000 U/kg) or saline daily for 5 consecutive days. Behavioral assessments and immunohistochemistry for angiogenesis, neurogenesis, and astrogliosis were performed with an 8-week follow-up. Hypoxia-inducible factor-1 (HIF-1) was also measured by Western blot analysis. The results showed that the combination therapy with EPO and G-CSF in the acute phase significantly improved rotarod performance and forelimb-use symmetry compared to the other groups, while subacute EPO and G-CSF therapy exhibited a modest improvement compared with the chronic saline controls. The acute treatment significantly increased the density of CD31+ (PECAM-1) and α-smooth muscle actin+ vessels in the frontal cortex and striatum, increased BrdU+/PSANCAM+ neurogenesis in the subventricular zone, and decreased astroglial density in the striatum. Furthermore, acute treatment significantly increased the HIF-1 expression in the cytosol and nucleus, whereas chronic treatment did not change the HIF-1 expression, consistent with the behavioral outcomes. These results indicate that the induction of HIF-1 expression by combination therapy with EPO and G-CSF synergistically enhances not only behavioral function but also neurogenesis and angiogenesis while decreasing the astroglial response in a timedependent manner.
Keywords: erythropoietin, granulocyte colonystimulating factor, hypoxia-inducible factor-1, hypoxicischemic brain injury
References
- [1].Hasselblatt M, Jeibmann A, Riesmeier B, Maintz D, Schabitz WR. Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke. Acta Neuropathol. 2007;113:45–51. doi: 10.1007/s00401-006-0152-y. [DOI] [PubMed] [Google Scholar]
- [2].Schlager GW, Griesmaier E, Wegleiter K, Neubauer V, Urbanek M, Kiechl-Kohlendorfer U, et al. Systemic G-CSF treatment does not improve long-term outcomes after neonatal hypoxic-ischaemic brain injury. Exp Neurol. 2011;230:67–74. doi: 10.1016/j.expneurol.2010.11.021. [DOI] [PubMed] [Google Scholar]
- [3].Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–970. doi: 10.1038/nm747. [DOI] [PubMed] [Google Scholar]
- [4].Sprigg N, Bath PMB. Colony stimulating factors (blood growth factors) are promising but unproven for treating stroke. Stroke. 2007;38:1997–1998. doi: 10.1161/STROKEAHA.107.482877. [DOI] [Google Scholar]
- [5].Digicaylioglu M. Erythropoietin in stroke: quo vadis. Expert Opin Biol. 2010;10:937–949. doi: 10.1517/14712598.2010.481435. [DOI] [PubMed] [Google Scholar]
- [6].Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A. 2001;98:4044–4049. doi: 10.1073/pnas.051606598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305:239–242. doi: 10.1126/science.1098313. [DOI] [PubMed] [Google Scholar]
- [8].Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35:1732–1737. doi: 10.1161/01.STR.0000132196.49028.a4. [DOI] [PubMed] [Google Scholar]
- [9].Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med. 2004;8:495–505. [PMC free article] [PubMed] [Google Scholar]
- [10].Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, EPO Stroke Trial Group et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009;40:e647–656. doi: 10.1161/STROKEAHA.109.564872. [DOI] [PubMed] [Google Scholar]
- [11].Burgess AW, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells. Int J Cancer. 1980;26:647–654. doi: 10.1002/ijc.2910260517. [DOI] [PubMed] [Google Scholar]
- [12].Sachs L. The molecular control of blood cell development. Science. 1987;238:1374–1379. doi: 10.1126/science.3317831. [DOI] [PubMed] [Google Scholar]
- [13].Cavallaro AM, Lilleby K, Majolino I, Storb R, Appelbaum FR, Rowley SD, et al. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant. 2000;25:85–89. doi: 10.1038/sj.bmt.1702072. [DOI] [PubMed] [Google Scholar]
- [14].Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, et al. The combination of granulocyte colonystimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood. 2008;111:5544–5552. doi: 10.1182/blood-2007-10-119073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J Cereb Blood Flow Metab. 2003;23:709–717. doi: 10.1097/01.WCB.0000065940.18332.8D. [DOI] [PubMed] [Google Scholar]
- [16].Six I, Gasan G, Mura E, Bordet R. Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur J Pharmacol. 2003;458:327–328. doi: 10.1016/S0014-2999(02)02785-1. [DOI] [PubMed] [Google Scholar]
- [17].Schneider A, Wysocki R, Pitzer C, Kruger C, Laage R, Schwab S, et al. An extended window of opportunity for G-CSF treatment in cerebral ischemia. BMC Biol. 2006;4:36. doi: 10.1186/1741-7007-4-36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun. 1998;253:26–32. doi: 10.1006/bbrc.1998.9748. [DOI] [PubMed] [Google Scholar]
- [19].Liu SP, Lee SD, Lee HT, Liu DD, Wang HJ, Liu RS, et al. Granulocyte colony-stimulating factor activating HIF-1alpha acts synergistically with erythropoietin to promote tissue plasticity. PLoS One. 2010;5:e10093. doi: 10.1371/journal.pone.0010093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol. 2002;30:440–449. doi: 10.1016/S0301-472X(02)00788-9. [DOI] [PubMed] [Google Scholar]
- [21].Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98:1289–1297. doi: 10.1182/blood.V98.5.1289. [DOI] [PubMed] [Google Scholar]
- [22].Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1) Mol Pharmacol. 2006;70:1469–1480. doi: 10.1124/mol.106.027029. [DOI] [PubMed] [Google Scholar]
- [23].Pierelli L, Perillo A, Greggi S, Salerno G, Panici PB, Menichella G, et al. Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitorcell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. J Clin Oncol. 1999;17:1288. doi: 10.1200/JCO.1999.17.4.1288. [DOI] [PubMed] [Google Scholar]
- [24].Olivieri A, Offidani M, Cantori I, Ciniero L, Ombrosi L, Masia MC, et al. Addition of erythropoietin to granulocyte colonystimulating factor after priming chemotherapy enhances hemopoietic progenitor mobilization. Bone Marrow Transplant. 1995;16:765–770. [PubMed] [Google Scholar]
- [25].Pierelli L, Menichella G, Scambia G, Teofili L, Iovino S, Serafini R, et al. et al. In vitro and In vitro effects of recombinant human erythropoietin plus recombinant human G-CSF on human haemopoietic progenitor cells. Bone Marrow Transplant. 1994;14:23–30. [PubMed] [Google Scholar]
- [26].Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A. 2000;97:10526–10531. doi: 10.1073/pnas.97.19.10526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Cheer SM, Wagstaff AJ. Epoetin Beta: a review of its clinical use in the treatment of anaemia in patients with cancer. Drugs. 2004;64:323–346. doi: 10.2165/00003495-200464030-00006. [DOI] [PubMed] [Google Scholar]
- [28].Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxicischemic brain injury. Neuroscience. 2010;169:259–268. doi: 10.1016/j.neuroscience.2010.04.038. [DOI] [PubMed] [Google Scholar]
- [29].MacLellan CL, Auriat AM, McGie SC, Yan R, Huynh HD, De Butte MF, et al. Gauging recovery after hemorrhagic stroke in rats: implications for cytoprotection studies. J Cereb Blood Flow Metab. 2006;26:1031–1042. doi: 10.1038/sj.jcbfm.9600255. [DOI] [PubMed] [Google Scholar]
- [30].Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood. 1999;93:2627–2636. [PubMed] [Google Scholar]
- [31].Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058:120–128. doi: 10.1016/j.brainres.2005.07.076. [DOI] [PubMed] [Google Scholar]
- [32].Sugiyama Y, Yagita Y, Oyama N, Terasaki Y, Omura-Matsuoka E, Sasaki T, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke. 2011;42:770–775. doi: 10.1161/STROKEAHA.110.597799. [DOI] [PubMed] [Google Scholar]
- [33].Zaidi AU, Bessert DA, Ong JE, Xu H, Barks JD, Silverstein FS, et al. New oligodendrocytes are generated after neonatal hypoxicischemic brain injury in rodents. Glia. 2004;46:380–390. doi: 10.1002/glia.20013. [DOI] [PubMed] [Google Scholar]
- [34].Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci. 2007;29:321–330. doi: 10.1159/000105473. [DOI] [PubMed] [Google Scholar]
- [35].Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50:427–434. doi: 10.1002/glia.20207. [DOI] [PubMed] [Google Scholar]
- [36].Askalan R, Deveber G, Ho M, Ma J, Hawkins C. Astrocyticinducible nitric oxide synthase in the ischemic developing human brain. Pediatr Res. 2006;60:687–692. doi: 10.1203/01.pdr.0000246226.89215.a6. [DOI] [PubMed] [Google Scholar]
- [37].Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23:297–308. doi: 10.1016/S0896-6273(00)80781-3. [DOI] [PubMed] [Google Scholar]
- [38].Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146–156. doi: 10.1038/nrn1326. [DOI] [PubMed] [Google Scholar]
- [39].Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11:400–407. doi: 10.1177/1073858405278321. [DOI] [PubMed] [Google Scholar]
- [40].Vangeison G, Rempe DA. The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist. 2009;15:597–588. doi: 10.1177/1073858409332405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Desclaux M, Teigell M, Amar L, Vogel R, Gimenez YRM, Privat A, et al. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PLoS One. 2009;4:e6227. doi: 10.1371/journal.pone.0006227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Jelkmann W. Effects of erythropoietin on brain function. Curr Pharm Biotechnol. 2005;6:65–79. doi: 10.2174/1389201053167257. [DOI] [PubMed] [Google Scholar]
- [43].Chen ZY, Warin R, Noguchi CT. Erythropoietin and normal brain development: receptor expression determines multitissue response. Neurodegener Dis. 2006;3:68–75. doi: 10.1159/000092096. [DOI] [PubMed] [Google Scholar]
- [44].Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol. 2003;62:228–236. doi: 10.1093/jnen/62.3.228. [DOI] [PubMed] [Google Scholar]