Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 Sep 28;30(5):733–754. doi: 10.1007/s12264-014-1465-9

Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses

Seongho Seo 1,2,3, Su Jin Kim 3, Dong Soo Lee 1,3,4, Jae Sung Lee 1,2,3,5,
PMCID: PMC5562590  PMID: 25260795

Abstract

Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

Keywords: dynamic positron emission tomography, graphical analysis, neuroreceptor imaging, parametric image, tracer kinetic modeling

References

  • [1].Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001;42:755–763. [PubMed] [Google Scholar]
  • [2].Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: A review of major approaches. J Neuroimaging. 2001;11:30–39. doi: 10.1111/j.1552-6569.2001.tb00006.x. [DOI] [PubMed] [Google Scholar]
  • [3].Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis-compartmental model. Ann Nucl Med. 2006;20:583–588. doi: 10.1007/BF02984655. [DOI] [PubMed] [Google Scholar]
  • [4].Zaidi H, Shidahara M. Neuroreceptor imaging. In: Choi IY, Gruetter R, editors. Neural Metabolism In Vivo. New York, USA: Springer; 2012. pp. 305–329. [Google Scholar]
  • [5].Lee JS, Lee DS. Tracer kinetic analysis for PET and SPECT. 2013. [Google Scholar]
  • [6].Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. 1984;15:217–227. doi: 10.1002/ana.410150302. [DOI] [PubMed] [Google Scholar]
  • [7].Carson RE. Tracer kinetic modeling in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron Emission Tomography. London: Springer; 2005. pp. 127–159. [Google Scholar]
  • [8].Feng DD. Biomedical Information Technology. 2008. [Google Scholar]
  • [9].Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 2012. [Google Scholar]
  • [10].Koeppe R, Holthoff V, Frey K, Kilbourn M, Kuhl D. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab. 1991;11:735–744. doi: 10.1038/jcbfm.1991.130. [DOI] [PubMed] [Google Scholar]
  • [11].Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med. 1998;39:1521–1530. [PubMed] [Google Scholar]
  • [12].Chen M-K, Lee J-S, McGlothan JL, Furukawa E, Adams RJ, Alexander M, et al. Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology. 2006;27:229–236. doi: 10.1016/j.neuro.2005.10.008. [DOI] [PubMed] [Google Scholar]
  • [13].Lim K, Kwon J, Jang I, Jeong J, Lee J, Kim H, et al. Modeling of brain D2 receptor occupancy-plasma concentration relationships with a novel antipsychotic, YKP1358, using serial PET scans in healthy volunteers. Clin Pharmacol Ther. 2007;81:252–258. doi: 10.1038/sj.clpt.6100049. [DOI] [PubMed] [Google Scholar]
  • [14].Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, et al. Differences in δ-and μ-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology. 2008;33:653–665. doi: 10.1038/sj.npp.1301440. [DOI] [PubMed] [Google Scholar]
  • [15].Kim JW, Lee JS, Kim SJ, Hoigebazar L, Shin KH, Yu KS, et al. Compartmental modeling and simplified quantification of [11C]sertraline distribution in human brain. Arch Pharm Res. 2012;35:1591–1597. doi: 10.1007/s12272-012-0910-4. [DOI] [PubMed] [Google Scholar]
  • [16].Lee JY, Seo SH, Kim YK, Yoo HB, Kim YE, Song IC, et al. Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry. 2014;85:23–30. doi: 10.1136/jnnp-2013-305549. [DOI] [PubMed] [Google Scholar]
  • [17].Carson RE. 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro. 2004. Tracer kinetic parametric imaging in PET; pp. 611–615. [Google Scholar]
  • [18].Lee JS, Lee DS, Ahn JY, Yeo JS, Cheon GJ, Kim S-K, et al. Generation of parametric image of regional myocardial blood flow using H215O dynamic PET and a linear least-squares method. J Nucl Med. 2005;46:1687–1695. [PubMed] [Google Scholar]
  • [19].Cselényi Z, Olsson H, Halldin C, Gulyás B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB 457 and [11C]WAY 100635. Neuroimage. 2006;32:1690–1708. doi: 10.1016/j.neuroimage.2006.02.053. [DOI] [PubMed] [Google Scholar]
  • [20].Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics. 2013;3:802–815. doi: 10.7150/thno.5130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997;6:279–287. doi: 10.1006/nimg.1997.0303. [DOI] [PubMed] [Google Scholar]
  • [22].Kim SJ, Lee JS, Kim YK, Frost J, Wand G, McCaul ME, et al. Multiple linear analysis methods for the quantification of irreversibly binding radiotracers. J Cereb Blood Flow Metab. 2008;28:1965–1977. doi: 10.1038/jcbfm.2008.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Transactions on Nuclear Science. 2002;49:104–110. [Google Scholar]
  • [24].Zhou Y, Huang SC, Bergsneider M, Wong DF. Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. Neuroimage. 2002;15:697–707. doi: 10.1006/nimg.2001.1021. [DOI] [PubMed] [Google Scholar]
  • [25].Alpert NM, Yuan F. A general method of Bayesian estimation for parametric imaging of the brain. Neuroimage. 2009;45:1183–1189. doi: 10.1016/j.neuroimage.2008.12.064. [DOI] [PubMed] [Google Scholar]
  • [26].Dean Fang Y-H, El Fakhri G, Becker JA, Alpert NM. Parametric imaging with Bayesian priors: A validation study with 11C-Altropane PET. Neuroimage. 2012;61:131–138. doi: 10.1016/j.neuroimage.2012.03.003. [DOI] [PubMed] [Google Scholar]
  • [27].Kamasak M. Effects of spatial regularization on kinetic parameter estimation for dynamic PET. Biomed Signal Process Control. 2014;9:6–13. [Google Scholar]
  • [28].Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–1539. doi: 10.1038/sj.jcbfm.9600493. [DOI] [PubMed] [Google Scholar]
  • [29].Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–652. doi: 10.1097/00004647-200106000-00002. [DOI] [PubMed] [Google Scholar]
  • [30].Morris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RFJ, Fisher RE. Kinetic modeling in positron emission tomography. In: Wernick MN, Aarsvold JN, editors. Emission Tomography: The Fundamentals of PET and SPECT. 2004. pp. 499–540. [Google Scholar]
  • [31].Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. PET Clinics. 2007;2:267–277. doi: 10.1016/j.cpet.2007.08.003. [DOI] [PubMed] [Google Scholar]
  • [32].Huang S-C, Barrio JR, Phelps ME. Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab. 1986;6:515–521. doi: 10.1038/jcbfm.1986.96. [DOI] [PubMed] [Google Scholar]
  • [33].Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–158. doi: 10.1006/nimg.1996.0066. [DOI] [PubMed] [Google Scholar]
  • [34].Phelps M, Huang S, Hoffman E, Selin C, Sokoloff L, Kuhl D. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–388. doi: 10.1002/ana.410060502. [DOI] [PubMed] [Google Scholar]
  • [35].Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980;238:E69–E82. doi: 10.1152/ajpendo.1980.238.1.E69. [DOI] [PubMed] [Google Scholar]
  • [36].Ogden RT. Estimation of kinetic parameters in graphical analysis of PET imaging data. Stat Med. 2003;22:3557–3568. doi: 10.1002/sim.1562. [DOI] [PubMed] [Google Scholar]
  • [37].Wu YG. Noninvasive quantification of local cerebral metabolic rate of glucose for clinical application using positron emission tomography and 18F-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab. 2008;28:242–250. doi: 10.1038/sj.jcbfm.9600535. [DOI] [PubMed] [Google Scholar]
  • [38].Zheng X, Wen L, Yu SJ, Huang SC, Feng DD. A study of non-invasive Patlak quantification for whole-body dynamic FDG-PET studies of mice. Biomed Signal Process Control. 2012;7:438–446. doi: 10.1016/j.bspc.2011.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an imagederived input function. J Cereb Blood Flow Metab. 1998;18:716–723. doi: 10.1097/00004647-199807000-00002. [DOI] [PubMed] [Google Scholar]
  • [40].Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, et al. Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med. 2008;49:2057–2066. doi: 10.2967/jnumed.108.053215. [DOI] [PubMed] [Google Scholar]
  • [41].Kim JH, Kim YH, Kim YJ, Yang BY, Jeong JM, Youn H, et al. Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK) Angiogenesis. 2013;16:837–846. doi: 10.1007/s10456-013-9359-4. [DOI] [PubMed] [Google Scholar]
  • [42].Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32:95–110. doi: 10.1016/0020-7101(93)90049-c. [DOI] [PubMed] [Google Scholar]
  • [43].Phillips RL, Chen CY, Wong DF, London ED. An improved method to calculate cerebral metabolic rates of glucose using PET. J Nucl Med. 1995;36:1668–1679. [PubMed] [Google Scholar]
  • [44].Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology. 1993;188:131–136. doi: 10.1148/radiology.188.1.8511286. [DOI] [PubMed] [Google Scholar]
  • [45].Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones A. Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab. 1991;11:1–9. doi: 10.1038/jcbfm.1991.1. [DOI] [PubMed] [Google Scholar]
  • [46].Hume SP, Myers R, Bloomfield PM, Opacka-Juffry J, Cremer JE, Ahier RG, et al. Quantitation of Carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse. 1992;12:47–54. doi: 10.1002/syn.890120106. [DOI] [PubMed] [Google Scholar]
  • [47].Lammertsma A, Bench C, Hume S, Osman S, Gunn K, Brooks D, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16:42–52. doi: 10.1097/00004647-199601000-00005. [DOI] [PubMed] [Google Scholar]
  • [48].Watabe H, Carson R, Iida H. The reference tissue model: Three compartments for the reference region. Neuroimage. 2000;11:S12. [Google Scholar]
  • [49].Feng D, Wong KP, Wu CM, Siu WC. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: Theory and simulation study. IEEE Trans Inf Technol Biomed. 1997;1:243–254. doi: 10.1109/4233.681168. [DOI] [PubMed] [Google Scholar]
  • [50].Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [15O] water. IEEE Trans Med Imaging. 2001;20:164–174. doi: 10.1109/42.918468. [DOI] [PubMed] [Google Scholar]
  • [51].Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–1722. [PubMed] [Google Scholar]
  • [52].Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42:938–943. [PubMed] [Google Scholar]
  • [53].Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis. J Nucl Med. 2001;42:782–787. [PubMed] [Google Scholar]
  • [54].Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005;52:201–210. doi: 10.1109/TBME.2004.840193. [DOI] [PubMed] [Google Scholar]
  • [55].Parker BJ, Feng DD. Graph-based Mumford-Shah segmentation of dynamic PET with application to input function estimation. IEEE Trans Nucl Sci. 2005;52:79–89. [Google Scholar]
  • [56].Zanderigo F, Ogden RT, Parsey RV. Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab. 2013;33:888–897. doi: 10.1038/jcbfm.2013.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–840. doi: 10.1097/00004647-199609000-00008. [DOI] [PubMed] [Google Scholar]
  • [58].Wong DF, Wagner HN, Dannals RF, Links JM, Frost JJ, Ravert HT, et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science. 1984;226:1393–1396. doi: 10.1126/science.6334363. [DOI] [PubMed] [Google Scholar]
  • [59].Beck JV, Arnold KJ. Parameter Estimation in Engineering and Science. New York: John Wiley & Sons; 1977. [Google Scholar]
  • [60].Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem. 1981;36:1463–1471. doi: 10.1111/j.1471-4159.1981.tb00587.x. [DOI] [PubMed] [Google Scholar]
  • [61].Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data. J Cereb Blood Flow Metab. 1983;3:1–7. doi: 10.1038/jcbfm.1983.1. [DOI] [PubMed] [Google Scholar]
  • [62].Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–590. doi: 10.1038/jcbfm.1985.87. [DOI] [PubMed] [Google Scholar]
  • [63].Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–747. doi: 10.1038/jcbfm.1990.127. [DOI] [PubMed] [Google Scholar]
  • [64].Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med. 1993;34:498–505. [PubMed] [Google Scholar]
  • [65].Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, et al. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. Neuroimage. 2010;49:578–586. doi: 10.1016/j.neuroimage.2009.07.021. [DOI] [PubMed] [Google Scholar]
  • [66].Zhou Y, Ye W, Brašić JR, Crabb AH, Hilton J, Wong DF. A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage. 2009;44:661–670. doi: 10.1016/j.neuroimage.2008.09.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Zhou Y, Ye W, Brašić JR, Wong DF. Multi-graphical analysis of dynamic PET. Neuroimage. 2010;49:2947–2957. doi: 10.1016/j.neuroimage.2009.11.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68].Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol. 2003;30:833–844. doi: 10.1016/s0969-8051(03)00114-8. [DOI] [PubMed] [Google Scholar]
  • [69].Logan J, Alexoff D, Fowler JS. The use of alternative forms of graphical analysis to balance bias and precision in PET images. J Cereb Blood Flow Metab. 2011;31:535–546. doi: 10.1038/jcbfm.2010.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. quarterly J Nucl Med. 2002;46:70–85. [PubMed] [Google Scholar]
  • [71].Ichise M, Ballinger JR, Golan H, Vines D, Luong A, Tsai S, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med. 1996;37:513–520. [PubMed] [Google Scholar]
  • [72].Carson RE. PET parameter estimation using linear integration methods: Bias and variability considerations. In: Uemura K, Lassen NA, Jones Y, Kanno I, editors. Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET. Amsterdam: Elsevier Science Publishers; 1993. [Google Scholar]
  • [73].Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential With [11C] NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab. 2000;20:225–243. doi: 10.1097/00004647-200002000-00003. [DOI] [PubMed] [Google Scholar]
  • [74].Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med. 2000;41:2083–2088. [PubMed] [Google Scholar]
  • [75].Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis—Pitfalls and a solution for the Logan plot. Ann Nucl Med. 2007;21:1–8. doi: 10.1007/BF03033993. [DOI] [PubMed] [Google Scholar]
  • [76].Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab. 2001;21:307–320. doi: 10.1097/00004647-200103000-00014. [DOI] [PubMed] [Google Scholar]
  • [77].Logan J, Fowler JS, Ding YS, Franceschi D, Wang GJ, Volkow ND, et al. Strategy for the formation of parametric images under conditions of low injected radioactivity applied to PET studies with the irreversible monoamine oxidase A tracers [11C]Clorgyline and Deuterium-substituted [11C] Clorgyline. J Cereb Blood Flow Metab. 2002;22:1367–1376. doi: 10.1097/01.WCB.0000040947.67415.e1. [DOI] [PubMed] [Google Scholar]
  • [78].Varga J, Szabo Z. Modified regression model for the Logan plot. J Cereb Blood Flow Metab. 2002;22:240–244. doi: 10.1097/00004647-200202000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Joshi A, Fessler JA, Koeppe RA. Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab. 2008;28:852–865. doi: 10.1038/sj.jcbfm.9600584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [80].Cselényi Z, Olsson H, Farde L, Gulyás B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET radioligand [11C]FLB 457. Neuroimage. 2002;17:47–60. doi: 10.1006/nimg.2002.1152. [DOI] [PubMed] [Google Scholar]
  • [81].Shidahara M, Seki C, Naganawa M, Sakata M, Ishikawa M, Ito H, et al. Improvement of likelihood estimation in Logan graphical analysis using maximum a posteriori for neuroreceptor PET imaging. Ann Nucl Med. 2009;23:163–171. doi: 10.1007/s12149-008-0226-0. [DOI] [PubMed] [Google Scholar]
  • [82].Feng D, Huang SC, Wang Z, Ho D. An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Trans Med Imaging. 1996;15:512–518. doi: 10.1109/42.511754. [DOI] [PubMed] [Google Scholar]
  • [83].Kimura Y, Hsu H, Toyama H, Senda M, Alpert NM. Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage. 1999;9:554–561. doi: 10.1006/nimg.1999.0430. [DOI] [PubMed] [Google Scholar]
  • [84].Van Huffel S, Vandewalle J. The total least squares problem: computational aspects and analysis. Philadelphia: Frontiers Appl Math SIAM; 1991. [Google Scholar]
  • [85].Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–1281. doi: 10.1097/01.WCB.0000038000.34930.4E. [DOI] [PubMed] [Google Scholar]
  • [86].Parsey RV, Ogden RT, Mann JJ. Determination of volume of distribution using likelihood estimation in graphical analysis: elimination of estimation bias. J Cereb Blood Flow Metab. 2003;23:1471–1478. doi: 10.1097/01.WCB.0000099460.85708.E1. [DOI] [PubMed] [Google Scholar]
  • [87].Young PC. An instrumental variable method for real-time identification of a noisy process. Automatica. 1970;6:271–287. [Google Scholar]
  • [88].Stoica P, Soderstrom T. Optimal instrumental variable estimation and approximate implementations. IEEE Trans Automat Contr. 1983;28:757–772. [Google Scholar]
  • [89].Stock JH, Watson MW. Introduction to Econometrics. 2003. [Google Scholar]
  • [90].Van Huffel S, Vandewalle J. Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models. Int J Contr. 1989;50:1039–1056. [Google Scholar]
  • [91].Minchin P. Analysis of tracer profiles with applications to phloem transport. J Exp Bot. 1978;29:1441–1450. [Google Scholar]
  • [92].Brooks D, Salmon E, Mathias C, Quinn N, Leenders K, Bannister R, et al. The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson’s disease, studied with PET. Brain. 1990;113:1539–1552. doi: 10.1093/brain/113.5.1539. [DOI] [PubMed] [Google Scholar]
  • [93].Howes OD, Montgomery AJ, Asselin M, Murray RM, Grasby PM, McGUIRE PK. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry. 2007;191:s13–s18. doi: 10.1192/bjp.191.51.s13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [94].Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66:13–20. doi: 10.1001/archgenpsychiatry.2008.514. [DOI] [PubMed] [Google Scholar]
  • [95].Kumakura Y, Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist. 2009;15:635–650. doi: 10.1177/1073858409338217. [DOI] [PubMed] [Google Scholar]
  • [96].Ikoma Y, Takano A, Varrone A, Halldin C. Graphic plot analysis for estimating binding potential of translocator protein (TSPO) in positron emission tomography studies with [18F]FEDAA1106. Neuroimage. 2013;69:78–86. doi: 10.1016/j.neuroimage.2012.12.009. [DOI] [PubMed] [Google Scholar]
  • [97].Heiss WD, Herholz K. Brain receptor imaging. J Nucl Med. 2006;47:302–312. [PubMed] [Google Scholar]
  • [98].Woo S, Kim S, Zhou J, Kim E, Seo JM, Park J, et al. Imaging of activated cortical areas after light and electrical stimulation of the rabbit retina: F-18 FDG PET-guided brain mapping. Biomed Eng Lett. 2012;2:111–117. [Google Scholar]
  • [99].Jin S, Oh M, Oh S, Oh J, Lee S, Chung S, et al. Differential diagnosis of Parkinsonism using dual-phase F-18 FP-CIT PET imaging. Nucl Med Mol Imaging. 2013;47:44–51. doi: 10.1007/s13139-012-0182-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [100].Park E, Hwang Y, Lee CN, Kim S, Oh S, Kim Y, et al. Differential diagnosis of patients with inconclusive Parkinsonian features using [18F]FP-CIT PET/CT. Nucl Med Mol Imaging. 2014;48:106–113. doi: 10.1007/s13139-013-0253-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [101].Lee SH, Park H. Parametric response mapping of longitudinal PET scans and their use in detecting changes in Alzheimer’s diseases. Biomed Eng Lett. 2014;4:73–79. [Google Scholar]
  • [102].Brust P, Hoff J, Steinbach J. Neurosci Bull. 2014. Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES