Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2013 Sep 5;30(3):409–416. doi: 10.1007/s12264-013-1374-3

Progressive loss of striatal dopamine terminals in MPTP-induced acute parkinsonism in cynomolgus monkeys using vesicular monoamine transporter type 2 PET imaging ([18F]AV-133)

Yajing Liu 1,2, Feng Yue 1,2,6, Rongping Tang 3, Guoxian Tao 3, Xiaomei Pan 3, Lin Zhu 4, Hank F Kung 5, Piu Chan 1,2,6,
PMCID: PMC5562597  PMID: 24061965

Abstract

The 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)-induced parkinsonism model, particularly in non-human primates, remains the gold-standard for studying the pathogenesis and assessing novel therapies for Parkinson’s disease. However, whether the loss of dopaminergic neurons in this model is progressive remains controversial, mostly due to the lack of objective in vivo assessment of changes in the integrity of these neurons. In the present study, parkinsonism was induced in cynomolgus monkeys by intravenous administration of MPTP (0.2 mg/kg) for 15 days; stable parkinsonism developed over 90 days, when the symptoms were stable. Noninvasive positron emission tomographic neuroimaging of vesicular monoamine transporter 2 with 9-[18F] fluoropropyl-(+)-dihydrotetrabenazine ([18F]AV-133) was used before, and 15 and 90 days after the beginning of acute MPTP treatment. The imaging showed evident progressive loss of striatal uptake of [18F]AV-133. The dopaminergic denervation severity had a significant linear correlation with the clinical rating scores and the bradykinesia subscores. These findings demonstrated that [18F]AV-133 PET imaging is a useful tool to noninvasively evaluate the evolution of monoaminergic terminal loss in a monkey model of MPTP-induced parkinsonism.

Keywords: Parkinson’s disease, non-human primate, [18F]AV-133, VMAT2, positron emission tomography

Footnotes

These authors contributed equally to this work.

References

  • [1].Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med. 1998;339:1044–1053. doi: 10.1056/NEJM199810083391506. [DOI] [PubMed] [Google Scholar]
  • [2].Yuan H, Zhang ZW, Liang LW, Shen Q, Wang XD, Ren SM, et al. Treatment strategies for Parkinson’s disease. Neurosci Bull. 2010;26:66–76. doi: 10.1007/s12264-010-0302-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Xia R, Mao ZH. Progression of motor symptoms in Parkinson’s disease. Neurosci Bull. 2012;28:39–48. doi: 10.1007/s12264-012-1050-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979;1:249–254. doi: 10.1016/0165-1781(79)90006-4. [DOI] [PubMed] [Google Scholar]
  • [5].Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A. 1983;80:4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Bezard E, Imbert C, Deloire X, Bioulac B, Gross CE. A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: evolution of motor symptoms in the monkey. Brain Res. 1997;766:107–112. doi: 10.1016/S0006-8993(97)00531-3. [DOI] [PubMed] [Google Scholar]
  • [7].Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64:208–215. doi: 10.1212/01.WNL.0000149403.14458.7F. [DOI] [PubMed] [Google Scholar]
  • [8].Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, et al. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C] WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci. 1998;18:419–427. doi: 10.1523/JNEUROSCI.18-01-00419.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Stoessl AJ, de la Fuente-Fernandez R. Dopamine receptors in Parkinson’s disease: imaging studies. Adv Neurol. 2003;91:65–71. [PubMed] [Google Scholar]
  • [10].Brooks DJ. Imaging dopamine transporters in Parkinson’s disease. Biomark Med. 2010;4:651–660. doi: 10.2217/bmm.10.86. [DOI] [PubMed] [Google Scholar]
  • [11].Marije BV, Leenders KL. Putamen FDOPA uptake and its relationship tot cognitive functioning in PD. J Neurol Sci. 2006;248:68–71. doi: 10.1016/j.jns.2006.05.033. [DOI] [PubMed] [Google Scholar]
  • [12].Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of Iodine-123-βCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1. 1997;38:1453–1459. [PubMed] [Google Scholar]
  • [13].Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. 123I-β-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: Unmasking an early diagnosis. Arch Neurol 2. 2004;61:1224–1229. doi: 10.1001/archneur.61.8.1224. [DOI] [PubMed] [Google Scholar]
  • [14].Alexoff DL, Vaska P, Marsteller D, Gerasimov T, Li J, Logan J, et al. Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med. 2003;44:815–822. [PubMed] [Google Scholar]
  • [15].Frey KA, Koeppe RA, Kilbourn MR, Vander Borght TM, Albin RL, Gilman S, et al. Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol. 1996;40:873–884. doi: 10.1002/ana.410400609. [DOI] [PubMed] [Google Scholar]
  • [16].Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K. The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol. 1995;294:577–583. doi: 10.1016/0014-2999(95)00594-3. [DOI] [PubMed] [Google Scholar]
  • [17].Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA. [3H]methoxytetrabenazine: A high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience. 1995;68:955–962. doi: 10.1016/0306-4522(95)00167-H. [DOI] [PubMed] [Google Scholar]
  • [18].Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, et al. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol. 1999;156:138–148. doi: 10.1006/exnr.1998.7008. [DOI] [PubMed] [Google Scholar]
  • [19].Chen MK, Kuwabara H, Zhou Y, Adams RJ, Brašić JR, McGlothan JL, et al. VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem. 2008;105:78–90. doi: 10.1111/j.1471-4159.2007.05108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol. 2006;33:685–694. doi: 10.1016/j.nucmedbio.2006.05.006. [DOI] [PubMed] [Google Scholar]
  • [21].Kilbourn M, Hockley B, Lee L, Hou C, Goswami R, Ponde D, et al. Pharmacokinetics of [18F]fluoroalkyl derivatives of dihydrotetrabenazine in rat and monkey brain. Nucl Med Biol. 2007;34:233–237. doi: 10.1016/j.nucmedbio.2007.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Chao KT, Tsao HH, Weng YH, Hsiao IT, Hsieh CJ, Wey SP, et al. Quantitative analysis of binding sites for 9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]AV-133) in a MPTP-lesioned PD mouse model. Synapse. 2012;66:823–831. doi: 10.1002/syn.21572. [DOI] [PubMed] [Google Scholar]
  • [23].Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, et al. In vivo measurement of vesicular monoamine transporter type 2 density in parkinson disease with 18F-AV-133. J Nucl Med. 2010;51:223–228. doi: 10.2967/jnumed.109.070094. [DOI] [PubMed] [Google Scholar]
  • [24].Zhu L, Liu Y, Plossl K, Lieberman B, Liu J, Kung HF. An improved radiosynthesis of [18F]AV-133: a PET imaging agent for vesicular monoamine transporter 2. Nucl Med Biol. 2010;37:133–141. doi: 10.1016/j.nucmedbio.2009.10.005. [DOI] [PubMed] [Google Scholar]
  • [25].Zhu L, Qiao H, Lieberman BP, Wu J, Liu Y, Pan Z, et al. Imaging of VMAT2 binding sites in the brain by 18F-AV-133: The effect of a pseudo-carrier. Nucl Med Biol. 2012;39:897–904. doi: 10.1016/j.nucmedbio.2012.05.002. [DOI] [PubMed] [Google Scholar]
  • [26].Yokoyama C, Yamanaka H, Onoe K, Kawasaki A, Nagata H, Shirakami K, et al. Mapping of serotonin transporters by positron emission tomography with [11C]DASB in conscious common marmosets: Comparison with rhesus monkeys. Synapse. 2010;64:594–601. doi: 10.1002/syn.20766. [DOI] [PubMed] [Google Scholar]
  • [27].Benamer HTS, Patterson J, Wyper DJ, Hadley DM, Macphee GJA, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15:692–698. doi: 10.1002/1531-8257(200007)15:4<692::AID-MDS1014>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  • [28].Walker MD, Dinelle K, Kornelsen R, McCormick S, Mah C, Holden JE, et al. J Cereb Blood Flow Metab. 2012. In vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F] FDOPA PET; pp. 1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Topping GJ, Dinelle K, Kornelsen R, McCormick S, Holden JE, Sossi V. Positron emission tomography kinetic modeling algorithms for small animal dopaminergic system imaging. Synapse. 2010;64:200–208. doi: 10.1002/syn.20716. [DOI] [PubMed] [Google Scholar]
  • [30].Kurlan R, Kim MH, Gash DM. The time course and magnitude of spontaneous recovery of parkinsonism produced by intracarotid administration of 1-methyl-4-Phenyl-1,2,3,6-tetrahydropyridine to monkeys. Ann Neurol. 1991;29:677–679. doi: 10.1002/ana.410290618. [DOI] [PubMed] [Google Scholar]
  • [31].Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, et al. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol. 1998;401:253–265. doi: 10.1002/(SICI)1096-9861(19981116)401:2<253::AID-CNE7>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • [32].Lin KJ, Weng YH, Wey SP, Hsiao IT, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): A novel vesicular monoamine transporter 2 imaging agent. J Nucl Med. 2010;51:1480–1485. doi: 10.2967/jnumed.110.078196. [DOI] [PubMed] [Google Scholar]
  • [33].Blesa J, Juri C, Collantes M, Peñuelas I, Prieto E, Iglesias E, et al. Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An 18F-DOPA and 11C-DTBZ PET study. Neurobiol Dis. 2010;38:456–463. doi: 10.1016/j.nbd.2010.03.006. [DOI] [PubMed] [Google Scholar]
  • [34].Blesa J, Pifl C, Sánchez-González MA, Juri C, GarcÍa-Cabezas MA, Adánez R, et al. The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: A PET, histological and biochemical study. Neurobiol Dis. 2012;48:79–91. doi: 10.1016/j.nbd.2012.05.018. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES