Abstract
The inhibitory sources in the thalamic nuclei are local interneurons and neurons of the thalamic reticular nucleus. Studies of models of absence epilepsy have shown that the seizures are associated with an excess of inhibitory neurotransmission in the thalamus. In the present study, we used light-microscopic gamma-aminobutyric acid (GABA) immunocytochemistry to quantify the interneurons in the lateral geniculate (LGN), ventral posteromedial (VPM), and ventral posterolateral (VPL) thalamic nuclei, and compared the values from normal Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS). We found that in both Wistar rats and GAERS, the proportion of interneurons was significantly higher in the LGN than in the VPM and VPL. In the LGN of Wistar rats, 16.4% of the neurons were interneurons and in the GAERS, the value was 15.1%. In the VPM, the proportion of interneurons was 4.2% in Wistar and 14.9% in GAERS; in the VPL the values were 3.7% for Wistar and 11.1% for the GAERS. There was no significant difference between Wistar rats and the GAERS regarding the counts of interneurons in the LGN, whereas the VPM and VPL showed significantly higher counts in GAERS. Comparison of the mean areas of both relay cells and interneuronal profiles showed no significant differences between Wistar rats and GAERS. These findings show that in the VPL and the VPM there are relatively more GABAergic interneurons in GAERS than in Wistar rats. This may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production of absence seizures.
Keywords: immunohistochemistry, interneuron, relay neuron, thalamus, GABA
References
- [1].Montero VM. A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp Brain Res. 1991;86:257–270. doi: 10.1007/BF00228950. [DOI] [PubMed] [Google Scholar]
- [2].Ohara PT, Lieberman AR, Hunt SP, Wu JY. Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; immunohistochemical studies by light and electron microscopy. Neuroscience. 1983;8:189–211. doi: 10.1016/0306-4522(83)90060-X. [DOI] [PubMed] [Google Scholar]
- [3].Penny GR, Fitzpatrick D, Schmechel DE, Diamond IT. Glutamic acid decarboxylase-immunoreactive neurons and horseradish peroxidase-labeled projection neurons in the ventral posterior nucleus of the cat and Galago senegalensis. J Neurosci. 1983;3:1868–1887. doi: 10.1523/JNEUROSCI.03-09-01868.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Ilinsky IA, Kultas-Ilinsky K. An autoradiographic study of topographical relationships between pallidal and cerebellar projections to the cat thalamus. Exp Brain Res. 1984;54:95–106. doi: 10.1007/BF00235822. [DOI] [PubMed] [Google Scholar]
- [5].Jones EG. The Thalamus. New York: Plenum Press; 1985. pp. 701–709. [Google Scholar]
- [6].Balercia G, Kultas-Ilinsky K, Bentivoglio M, Ilinsky IA. Neuronal and synaptic organization of the centromedian nucleus of the monkey thalamus: a quantitative ultrastructural study, with tract tracing and immunohistochemical observations. J Neurocytol. 1996;25:267–288. doi: 10.1007/BF02284802. [DOI] [PubMed] [Google Scholar]
- [7].Ilinsky IA, Yi H, Kultas-Ilinsky K. Mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J Comp Neurol. 1997;386:601–612. doi: 10.1002/(SICI)1096-9861(19971006)386:4<601::AID-CNE6>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- [8].Guillery RW, Feig SL, Lozsadi DA. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 1998;21:28–32. doi: 10.1016/S0166-2236(97)01157-0. [DOI] [PubMed] [Google Scholar]
- [9].Houser CR, Vaughn JE, Barber RP, Roberts E. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 1980;200:341–354. doi: 10.1016/0006-8993(80)90925-7. [DOI] [PubMed] [Google Scholar]
- [10].Spreafico R, Schmechel DE, Ellis LC, Jr, Rustioni A. Cortical relay neurons and interneurons in the N. ventralis posterolateralis of cats: a horseradish peroxidase, electronmicroscopic, Golgi and immunocytochemical study. Neuroscience. 1983;9:491–509. doi: 10.1016/0306-4522(83)90168-9. [DOI] [PubMed] [Google Scholar]
- [11].Madarasz M, Somogyi G, Somogyi J, Hamori J. Numerical estimation of gamma-aminobutyric acid (GABA)-containing neurons in three thalamic nuclei of the cat: direct GABA immunocytochemistry. Neurosci Lett. 1985;61:73–78. doi: 10.1016/0304-3940(85)90403-3. [DOI] [PubMed] [Google Scholar]
- [12].Rinvik E, Ottersen OP, Storm-Mathisen J. Gammaaminobutyrate-like immunoreactivity in the thalamus of the cat. Neuroscience. 1987;21:781–805. doi: 10.1016/0306-4522(87)90037-6. [DOI] [PubMed] [Google Scholar]
- [13].Smith Y, Seguela P, Parent A. Distribution of GABAimmunoreactive neurons in the thalamus of the squirrel monkey (Saimiri sciureus) Neuroscience. 1987;22:579–591. doi: 10.1016/0306-4522(87)90355-1. [DOI] [PubMed] [Google Scholar]
- [14].Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull. 1997;42:27–37. doi: 10.1016/S0361-9230(96)00107-4. [DOI] [PubMed] [Google Scholar]
- [15].Bentivoglio M, Spreafico R, Minciacchi D, Macchi G. GABAergic interneurons and neuropil of the intralaminar thalamus: an immunohistochemical study in the rat and the cat, with notes in the monkey. Exp Brain Res. 1991;87:85–95. doi: 10.1007/BF00228509. [DOI] [PubMed] [Google Scholar]
- [16].Hunt CA, Pang DZ, Jones EG. Distribution and density of GABA cells in intralaminar and adjacent nuclei of monkey thalamus. Neuroscience. 1991;43:185–196. doi: 10.1016/0306-4522(91)90426-O. [DOI] [PubMed] [Google Scholar]
- [17].Bartho P, Freund TF, Acsady L. Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci. 2002;16:999–1014. doi: 10.1046/j.1460-9568.2002.02157.x. [DOI] [PubMed] [Google Scholar]
- [18].Bokor H, Frere SG, Eyre MD, Slezia A, Ulbert I, Luthi A, et al. Selective GABAergic control of higher-order thalamic relays. Neuron. 2005;45:929–940. doi: 10.1016/j.neuron.2005.01.048. [DOI] [PubMed] [Google Scholar]
- [19].Cavdar S, Onat F, Cakmak YO, Saka E, Yananli HR, Aker R. Connections of the zona incerta to the reticular nucleus of the thalamus in the rat. J Anat. 2006;209:251–258. doi: 10.1111/j.1469-7580.2006.00600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Bodor AL, Giber K, Rovo Z, Ulbert I, Acsady L. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J Neurosci. 2008;28:3090–3102. doi: 10.1523/JNEUROSCI.5266-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Gulcebi MI, Ketenci S, Linke R, Hacioglu H, Yanali H, Veliskova J, et al. Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Res Bull. 2012;87:312–318. doi: 10.1016/j.brainresbull.2011.11.005. [DOI] [PubMed] [Google Scholar]
- [22].Paz JT, Chavez M, Saillet S, Deniau JM, Charpier S. Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci. 2007;27:929–941. doi: 10.1523/JNEUROSCI.4677-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Winer JA, Larue DT, Huang CL. Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. J Comp Neurol. 1999;413:181–197. doi: 10.1002/(SICI)1096-9861(19991018)413:2<181::AID-CNE1>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- [24].Urbain N, Deschenes M. Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron. 2007;56:714–725. doi: 10.1016/j.neuron.2007.10.023. [DOI] [PubMed] [Google Scholar]
- [25].Fitzpatrick D, Penny GR, Schmechel DE. Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci. 1984;4:1809–1829. doi: 10.1523/JNEUROSCI.04-07-01809.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].de Biasi S, Frassoni C, Spreafico R. GABA immunoreactivity in the thalamic reticular nucleus of the rat. A light and electron microscopical study. Brain Res. 1986;399:143–147. doi: 10.1016/0006-8993(86)90608-6. [DOI] [PubMed] [Google Scholar]
- [27].Wang S, Bickford ME, Van Horn SC, Erisir A, Godwin DW, Sherman SM. Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. J Comp Neurol. 2001;440:321–341. doi: 10.1002/cne.1389. [DOI] [PubMed] [Google Scholar]
- [28].Steriade M, Deschenes M. The thalamus as a neuronal oscillator. Brain Res. 1984;320:1–63. doi: 10.1016/0165-0173(84)90017-1. [DOI] [PubMed] [Google Scholar]
- [29].Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol. 1987;96:127–136. doi: 10.1016/0014-4886(87)90174-9. [DOI] [PubMed] [Google Scholar]
- [30].Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3:371–382. doi: 10.1038/nrn811. [DOI] [PubMed] [Google Scholar]
- [31].Pinault D. Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. J Physiol. 2003;552:881–905. doi: 10.1113/jphysiol.2003.046573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62:371–376. doi: 10.1001/archneur.62.3.371. [DOI] [PubMed] [Google Scholar]
- [33].Polack PO, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci. 2007;27:6590–6599. doi: 10.1523/JNEUROSCI.0753-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol. 1998;55:27–57. doi: 10.1016/S0301-0082(97)00091-9. [DOI] [PubMed] [Google Scholar]
- [35].Carcak N, Aker RG, Ozdemir O, Demiralp T, Onat FY. The relationship between age-related development of spike-andwave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy. Neurobiol Dis. 2008;32:355–363. doi: 10.1016/j.nbd.2008.07.018. [DOI] [PubMed] [Google Scholar]
- [36].Cavdar S, Hacioglu H, Dogukan SY, Onat F. Do the quantitative relationships of synaptic junctions and terminals in the thalamus of genetic absence epilepsy rats from Strasbourg (GAERS) differ from those in normal control Wistar rats. Neurol Sci. 2012;33:251–259. doi: 10.1007/s10072-011-0666-5. [DOI] [PubMed] [Google Scholar]
- [37].Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego, California: Academic Press; 1998. pp. 8–74. [Google Scholar]
- [38].Spreafico R, Frassoni C, Arcelli P, De Biasi S. GABAergic interneurons in the somatosensory thalamus of the guinea-pig: a light and ultrastructural immunocytochemical investigation. Neuroscience. 1994;59:961–973. doi: 10.1016/0306-4522(94)90299-2. [DOI] [PubMed] [Google Scholar]
- [39].Barbaresi P, Spreafico R, Frassoni C, Rustioni A. GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res. 1986;382:305–326. doi: 10.1016/0006-8993(86)91340-5. [DOI] [PubMed] [Google Scholar]
- [40].LeVay S, Ferster D. Proportion of interneurons in the cat’s lateral geniculate nucleus. Brain Res. 1979;164:304–308. doi: 10.1016/0006-8993(79)90026-X. [DOI] [PubMed] [Google Scholar]
- [41].Cavdar S, Hacioglu H, Sirvanci S, Keskinoz E, Onat F. Synaptic organization of the rat thalamus: a quantitative study. Neurol Sci. 2011;32:1047–1056. doi: 10.1007/s10072-011-0606-4. [DOI] [PubMed] [Google Scholar]
- [42].Montero VM, Zempel J. The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Exp Brain Res. 1986;62:215–223. doi: 10.1007/BF00237420. [DOI] [PubMed] [Google Scholar]
- [43].Montero VM. The GABA-immunoreactive neurons in the interlaminar regions of the cat lateral geniculate nucleus: light and electron microscopic observations. Exp Brain Res. 1989;75:497–512. doi: 10.1007/BF00249901. [DOI] [PubMed] [Google Scholar]
- [44].Sanchez-Vives MV, Bal T, Kim U, von Krosigk M, McCormick DA. Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? J Neurosci. 1996;16:5923–5941. doi: 10.1523/JNEUROSCI.16-19-05923.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8:4007–4026. doi: 10.1523/JNEUROSCI.08-11-04007.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Vergnes M, Marescaux C. Cortical and thalamic lesions in rats with genetic absence epilepsy. J Neural Transm Suppl. 1992;35:71–83. doi: 10.1007/978-3-7091-9206-1_5. [DOI] [PubMed] [Google Scholar]
- [47].Snead OC., 3rd Basic mechanisms of generalized absence seizures. Ann Neurol. 1995;37:146–157. doi: 10.1002/ana.410370204. [DOI] [PubMed] [Google Scholar]
- [48].Marescaux C, Vergnes M, Bernasconi R. GABAB receptor antagonists: potential new anti-absence drugs. J Neural Transm Suppl. 1992;35:179–188. doi: 10.1007/978-3-7091-9206-1_12. [DOI] [PubMed] [Google Scholar]
- [49].Liu Z, Vergnes M, Depaulis A, Marescaux C. Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res. 1991;545:1–7. doi: 10.1016/0006-8993(91)91262-Y. [DOI] [PubMed] [Google Scholar]
- [50].Hosford DA, Clark S, Cao Z, Wilson WA, Jr, Lin FH, Morrisett RA, et al. The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science. 1992;257:398–401. doi: 10.1126/science.1321503. [DOI] [PubMed] [Google Scholar]
- [51].Charpier S, Leresche N, Deniau JM, Mahon S, Hughes SW, Crunelli V. On the putative contribution of GABA(B) receptors to the electrical events occurring during spontaneous spike and wave discharges. Neuropharmacology. 1999;38:1699–1706. doi: 10.1016/S0028-3908(99)00139-2. [DOI] [PubMed] [Google Scholar]
- [52].Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22:1480–1495. doi: 10.1523/JNEUROSCI.22-04-01480.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [53].Richards DA, Lemos T, Whitton PS, Bowery NG. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J Neurochem. 1995;65:1674–1680. doi: 10.1046/j.1471-4159.1995.65041674.x. [DOI] [PubMed] [Google Scholar]
- [54].Sitnikova E, van Luijtelaar G. Cortical control of generalized absence seizures: effect of lidocaine applied to the somatosensory cortex in WAG/Rij rats. Brain Res. 2004;1012:127–137. doi: 10.1016/j.brainres.2004.03.041. [DOI] [PubMed] [Google Scholar]