Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 Jul 9;30(4):697–710. doi: 10.1007/s12264-013-1449-1

Voltage-dependent blockade by bupivacaine of cardiac sodium channels expressed in Xenopus oocytes

Heng Zhang 3, Hui Ji 1,2, Zhirui Liu 3, Yonghua Ji 2,3, Xinmin You 1,2, Gang Ding 1,2,, Zhijun Cheng 1,2,
PMCID: PMC5562622  PMID: 25008571

Abstract

Bupivacaine ranks as the most potent and efficient drug among class I local anesthetics, but its high potential for toxic reactions severely limits its clinical use. Although bupivacaine-induced toxicity is mainly caused by substantial blockade of voltage-gated sodium channels (VGSCs), how these hydrophobic molecules interact with the receptor sites to which they bind remains unclear. Nav1.5 is the dominant isoform of VGSCs expressed in cardiac myocytes, and its dysfunction may be the cause of bupivacaine-triggered arrhythmia. Here, we investigated the effect of bupivacaine on Nav1.5 within the clinical concentration range. The electrophysiological measurements on Nav1.5 expressed in Xenopus oocytes showed that bupivacaine induced a voltage- and concentration-dependent blockade on the peak of I Na and the half-maximal inhibitory dose was 4.51 μmol/L. Consistent with other local anesthetics, bupivacaine also induced a use-dependent blockade on Nav1.5 currents. The underlying mechanisms of this blockade may contribute to the fact that bupivacaine not only dose-dependently affected the gating kinetics of Nav1.5 but also accelerated the development of its open-state slow inactivation. These results extend our knowledge of the action of bupivacaine on cardiac sodium channels, and therefore contribute to the safer and more efficient clinical use of bupivacaine.

Keywords: bupivacaine, Nav1.5, voltage-dependent blockade, inactivated state

Footnotes

These authors contributed equally to this work.

Contributor Information

Gang Ding, Email: ddgang@hotmail.com.

Zhijun Cheng, Email: zj.cheng@hotmail.com.

References

  • [1].Brown DL, Ransom DM, Hall JA, Leicht CH, Schroeder DR, Offord KP. Regional anesthesia and local anesthetic-induced systemic toxicity: seizure frequency and accompanying cardiovascular changes. Anesth Analg. 1995;81:321–328. doi: 10.1097/00000539-199508000-00020. [DOI] [PubMed] [Google Scholar]
  • [2].Graf BM. The cardiotoxicity of local anesthetics: the place of ropivacaine. Curr Top Med Chem. 2001;1:207–214. doi: 10.2174/1568026013395164. [DOI] [PubMed] [Google Scholar]
  • [3].Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994;265:1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  • [4].Valenzuela C, Sanchez-Chapula J. Electrophysiologic interactions between mexiletine-quinidine and mexiletineropitoin in guinea pig papillary muscle. J Cardiovasc Pharmacol. 1989;14:783–789. doi: 10.1097/00005344-198911000-00016. [DOI] [PubMed] [Google Scholar]
  • [5].Gonzalez T, Longobardo M, Caballero R, Delpon E, Tamargo J, Valenzuela C. Effects of bupivacaine and a novel local anesthetic, IQB-9302, on human cardiac K+ channels. J Pharmacol Exp Ther. 2001;296:573–583. [PubMed] [Google Scholar]
  • [6].Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 1992;72:S15–48. doi: 10.1152/physrev.1992.72.suppl_4.S15. [DOI] [PubMed] [Google Scholar]
  • [7].Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
  • [8].Candenas L, Seda M, Noheda P, Buschmann H, Cintado CG, Martin JD, et al. Molecular diversity of voltage-gated sodium channel alpha and beta subunit mRNAs in human tissues. Eur J Pharmacol. 2006;541:9–16. doi: 10.1016/j.ejphar.2006.04.025. [DOI] [PubMed] [Google Scholar]
  • [9].Nau C, Wang SY, Strichartz GR, Wang GK. Point mutations at N434 in D1-S6 of mu1 Na(+) channels modulate binding affinity and stereoselectivity of local anesthetic enantiomers. Mol Pharmacol. 1999;56:404–413. doi: 10.1124/mol.56.2.404. [DOI] [PubMed] [Google Scholar]
  • [10].Nau C, Wang SY, Wang GK. Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol Pharmacol. 2003;63:1398–1406. doi: 10.1124/mol.63.6.1398. [DOI] [PubMed] [Google Scholar]
  • [11].Valenzuela C, Snyders DJ, Bennett PB, Tamargo J, Hondeghem LM. Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation. 1995;92:3014–3024. doi: 10.1161/01.CIR.92.10.3014. [DOI] [PubMed] [Google Scholar]
  • [12].Wilde AA, Brugada R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ Res. 2011;108:884–897. doi: 10.1161/CIRCRESAHA.110.238469. [DOI] [PubMed] [Google Scholar]
  • [13].Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–811. doi: 10.1016/0092-8674(95)90359-3. [DOI] [PubMed] [Google Scholar]
  • [14].Eckardt L, Kirchhof P, Loh P, Schulze-Bahr E, Johna R, Wichter T, et al. Brugada syndrome and supraventricular tachyarrhythmias: a novel association? J Cardiovasc Electrophysiol. 2001;12:680–685. doi: 10.1046/j.1540-8167.2001.00680.x. [DOI] [PubMed] [Google Scholar]
  • [15].Laitinen-Forsblom PJ, Makynen P, Makynen H, Yli-Mayry S, Virtanen V, Kontula K, et al. SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias. J Cardiovasc Electrophysiol. 2006;17:480–485. doi: 10.1111/j.1540-8167.2006.00411.x. [DOI] [PubMed] [Google Scholar]
  • [16].Sakura S, Bollen AW, Ciriales R, Drasner K. Local anesthetic neurotoxicity does not result from blockade of voltage-gated sodium channels. Anesth Analg. 1995;81:338–346. doi: 10.1097/00000539-199508000-00023. [DOI] [PubMed] [Google Scholar]
  • [17].Kindler CH, Yost CS. Two-pore domain potassium channels: new sites of local anesthetic action and toxicity. Reg Anesth Pain Med. 2005;30:260–274. doi: 10.1016/j.rapm.2004.12.001. [DOI] [PubMed] [Google Scholar]
  • [18].Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, et al. Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci Bull. 2012;28:209–221. doi: 10.1007/s12264-012-1234-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Chen HW, yang HT, Zhou JJ, Ji YH, Zhu HY. Pharmacological modulation of brain Nav1.2 and cardiac Nav1.5 subtypes by the local anesthetic ropivacaine. Neurosci Bull. 2010;26:289–296. doi: 10.1007/s12264-010-0122-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Lenkowski PW, Shah BS, Dinn AE, Lee K, Patel MK. Lidocaine block of neonatal Nav1.3 is differentially modulated by co-expression of beta1 and beta3 subunits. Eur J Pharmacol. 2003;467:23–30. doi: 10.1016/S0014-2999(03)01595-4. [DOI] [PubMed] [Google Scholar]
  • [21].Bean BP, Cohen CJ, Tsien RW. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983;81:613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Gristwood RW. Ca rdiac and CNS toxicity of levobupivacaine: strengths of evidence for advantage over bupivacaine. Drug Saf. 2002;25:153–163. doi: 10.2165/00002018-200225030-00002. [DOI] [PubMed] [Google Scholar]
  • [23].Clarkson CW, Hondeghem LM. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology. 1985;62:396–405. doi: 10.1097/00000542-198504000-00006. [DOI] [PubMed] [Google Scholar]
  • [24].Burlacu CL, Buggy DJ. Update on local anesthetics: focus on levobupivacaine. Ther Clin Risk Manag. 2008;4:381–392. doi: 10.2147/tcrm.s1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Hanck DA, Nikitina E, McNulty MM, Fozzard HA, Lipkind GM, Sheets MF. Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythmic drug affinity. Circ Res. 2009;105:492–499. doi: 10.1161/CIRCRESAHA.109.198572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Ulbricht W. Sodium channel inactivation: molecular determinants and modulation. Physiol Rev. 2005;85:1271–1301. doi: 10.1152/physrev.00024.2004. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES