Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 Jul 9;30(4):595–600. doi: 10.1007/s12264-014-1451-7

Nematodes feel a craving - Using Caenorhabditis elegans as a model to study alcohol addiction

Geng Zhu 1, Fen Zhang 1, Wei Li 1,
PMCID: PMC5562629  PMID: 25008572

Abstract

Alcohol is the most frequently-used addictive drug. However, the mechanism by which its consumption leads to addiction remains largely elusive. Given the conservation of behavioral reactions to alcohol, Caenorhabitis elegans (C. elegans) has been effectively used as a model system to investigate the relevant molecular targets and pathways mediating these responses. In this article, we review the roles of BK channels (also called SLO-1), the lipid microenvironment, receptors, the synaptic machinery, and neurotransmitters in both the acute and chronic effects of alcohol. We provide an overview of the genes and mechanisms involved in alcoholismrelated behaviors in C. elegans.

Keywords: C. elegans, substance abuse, ethanol, BK channel

References

  • [1].Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • [2].Montgomery MK, Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 1998;14:255–258. doi: 10.1016/S0168-9525(98)01510-8. [DOI] [PubMed] [Google Scholar]
  • [3].Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, et al. A central role of the BK Potassium Channel in behavioral responses to ethanol in C. elegans. Cell. 2003;115:655–666. doi: 10.1016/S0092-8674(03)00979-6. [DOI] [PubMed] [Google Scholar]
  • [4].Davies AG, Bettinger JC, Thiele TR, Judy ME, McIntire SL. Natural Variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron. 2004;42:731–743. doi: 10.1016/j.neuron.2004.05.004. [DOI] [PubMed] [Google Scholar]
  • [5].Ikemoto Y, Ono K, Yoshida A, Akaike N. Delayed activation of large-conductance Ca2+-activated K channels in hippocampal neurons of the rat. Biophys J. 1989;56:207–212. doi: 10.1016/S0006-3495(89)82665-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Wang Z-W, Saifee O, Nonet ML, Salkoff L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron. 2001;32:867–881. doi: 10.1016/S0896-6273(01)00522-0. [DOI] [PubMed] [Google Scholar]
  • [7].Hu H, Shao L-R, Chavoshy S, Gu N, Trieb M, Behrens R, et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci. 2001;21:9585–9597. doi: 10.1523/JNEUROSCI.21-24-09585.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Li W, Gao S, Lv C, Wu Y, Guo Z, Ding J, et al. Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons. J Cell Physiol. 2007;212:348–357. doi: 10.1002/jcp.21007. [DOI] [PubMed] [Google Scholar]
  • [9].Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, De Moor MHM, et al. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res Hum Genet. 2010;13:10. doi: 10.1375/twin.13.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Bettinger JC, Leung K, Bolling MH, Goldsmith AD, Davies AG. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans. PLoS One 2012, 7. [DOI] [PMC free article] [PubMed]
  • [11].Brodie MS, Scholz A, Weiger TM, Dopico AM. Ethanol interactions with calcium-dependent potassium channels. Alcohol Clin Exp Res. 2007;31:1625–1632. doi: 10.1111/j.1530-0277.2007.00469.x. [DOI] [PubMed] [Google Scholar]
  • [12].Siggins GR, Roberto M, Nie Z. The tipsy terminal: presynaptic effects of ethanol. Pharmacol Ther. 2005;107:80–98. doi: 10.1016/j.pharmthera.2005.01.006. [DOI] [PubMed] [Google Scholar]
  • [13].Cowmeadow RB, Krishnan HR, Atkinson NS. The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res. 2005;29:1777–1786. doi: 10.1097/01.alc.0000183232.56788.62. [DOI] [PubMed] [Google Scholar]
  • [14].Gruss M, Henrich M, Koenig P, Hempelmann G, Vogel W, Scholz A. Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BKCa channels. Eur J Neurosci. 2001;14:1246–1256. doi: 10.1046/j.0953-816x.2001.01754.x. [DOI] [PubMed] [Google Scholar]
  • [15].Nonet ML, Staunton JE, Kilgard MP, Fergestad T, Hartwieg E, Horvitz HR, et al. Caenorhabditis elegans. J Neurosci. 1997;17:8061–8073. doi: 10.1523/JNEUROSCI.17-21-08061.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron. 1997;18:613–622. doi: 10.1016/S0896-6273(00)80302-5. [DOI] [PubMed] [Google Scholar]
  • [17].Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, et al. The role of Rab3A in neurotransmitter release. Nature. 1994;3696480:493–497. doi: 10.1038/369493a0. [DOI] [PubMed] [Google Scholar]
  • [18].Kapfhamer D, Bettinger JC, Davies AG, Eastman CL, Smail EA, Heberlein U, et al. Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol. Genes Brain Behav. 2008;7:669–676. doi: 10.1111/j.1601-183X.2008.00404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Fehr C, Shirley RL, Crabbe JC, Belknap JK, Buck KJ, Phillips TJ. The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2. Alcohol Clin Exp Res. 2005;29:708–720. doi: 10.1097/01.ALC.0000164366.18376.EF. [DOI] [PubMed] [Google Scholar]
  • [20].Graham ME, Edwards MR, Holden-Dye L, Morgan A, Burgoyne RD, Barclay JW. UNC-18 modulates ethanol sensitivity in Caenorhabditis elegans. Mol Biol Cell. 2009;20:43–55. doi: 10.1091/mbc.E08-07-0689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Thorsell A. Neuropeptide Y (NPY) in alcohol intake and dependence. Peptides. 2007;28:480–483. doi: 10.1016/j.peptides.2006.11.017. [DOI] [PubMed] [Google Scholar]
  • [22].Thorsell A, Repunte-Canonigo V, O’Dell LE, Chen SA, King AR, Lekic D, et al. Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain. 2007;130:1330–1337. doi: 10.1093/brain/awm033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].De Bono M, Bargmann CI. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell. 1998;94:679–689. doi: 10.1016/S0092-8674(00)81609-8. [DOI] [PubMed] [Google Scholar]
  • [24].Lee J, Jee C, McIntire SL. Ethanol preference in C. elegans. Genes Brain Behav. 2009;8:578–585. doi: 10.1111/j.1601-183X.2009.00513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Jee C, Lee J, Lim JP, Parry D, Messing RO, McIntire SL. SEB-3, a CRF receptor-like GPCR, regulates locomotor activity states, stress responses and ethanol tolerance in Caenorhabditis elegans. Genes Brain Behav. 2013;12:250–262. doi: 10.1111/j.1601-183X.2012.00829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Johnson BE, Glauser DA, Dan-Glauser ES, Halling DB, Aldrich RW, Goodman MB. Alternatively spliced domains interact to regulate BK potassium channel gating. Proc Natl Acad Sci U S A. 2011;108:20784–20789. doi: 10.1073/pnas.1116795108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Feinberg-Zadek PL, Treistman SN. Beta-Subunits are important modulators of the acute response to alcohol in human BK channels. Alcohol Clin Exp Res. 2007;31:737–744. doi: 10.1111/j.1530-0277.2007.00371.x. [DOI] [PubMed] [Google Scholar]
  • [28].Chen B, Ge Q, Xia X-M, Liu P, Wang SJ, Zhan H, et al. A novel auxiliary subunit critical to BK channel function in Caenorhabditis elegans. J Neurosci. 2010;30:16651–16661. doi: 10.1523/JNEUROSCI.3211-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Johnson JR, Kashyap S, Rankin K, Barclay JW. Rab-3 and unc-18 interactions in alcohol sensitivity are distinct from synaptic transmission. PLoS One. 2013;8:e81117. doi: 10.1371/journal.pone.0081117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Barclay J, Graham M, Edwards M, Johnson J, Morgan A, Burgoyne R. Presynaptic targets for acute ethanol sensitivity. Biochem Soc Trans. 2010;38:172. doi: 10.1042/BST0380172. [DOI] [PubMed] [Google Scholar]
  • [31].Ward A, Walker VJ, Feng Z, Xu XZS. Cocaine modulates locomotion behavior in C. elegans. PLoS One. 2009;4:e5946. doi: 10.1371/journal.pone.0005946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Carvelli L, Matthies DS, Galli A. Molecular mechanisms of amphetamine actions in Caenorhabditis elegans. Mol pharmacol. 2010;78:151–156. doi: 10.1124/mol.109.062703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282:2028–2033. doi: 10.1126/science.282.5396.2028. [DOI] [PubMed] [Google Scholar]
  • [34].Lewis JA, Wu CH, Berg H, Levine JH. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics. 1980;95:905–928. doi: 10.1093/genetics/95.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Garcia LR, Mehta P, Sternberg PW. Regulation of distinct muscle behaviors controls the C. elegans male’s copulatory spicules during mating. Cell. 2001;107:777–788. doi: 10.1016/S0092-8674(01)00600-6. [DOI] [PubMed] [Google Scholar]
  • [36].Waggoner LE, Dickinson KA, Poole DS, Tabuse Y, Miwa J, Schafer WR. Long-term nicotine adaptation in Caenorhabditis elegans involves PKC-dependent changes in nicotinic receptor abundance. J Neurosci. 2000;20:8802–8811. doi: 10.1523/JNEUROSCI.20-23-08802.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, et al. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell. 2006;127:621–633. doi: 10.1016/j.cell.2006.09.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Nieto-Fernandez F, Andrieux S, Idrees S, Bagnall C, Pryor SC, Sood R. The effect of opioids and their antagonists on the nocifensive response of Caenorhabditis elegans to noxious thermal stimuli. Invert Neurosci. 2009;9:195–200. doi: 10.1007/s10158-010-0099-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].McPartland JM, Glass M. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene. 2003;312:297–303. doi: 10.1016/S0378-1119(03)00638-3. [DOI] [PubMed] [Google Scholar]
  • [40].Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids. 2002;66:123–142. doi: 10.1054/plef.2001.0342. [DOI] [PubMed] [Google Scholar]
  • [41].Lehtonen M, Reisner K, Auriola S, Wong G, Callaway JC. Mass-spectrometric Identification of Anandamide and 2-arachidonoylglycerol in Nematodes. Chem Biodivers. 2008;5:2431–2441. doi: 10.1002/cbdv.200890208. [DOI] [PubMed] [Google Scholar]
  • [42].Bargmann CI. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol. 2001;2:1005. doi: 10.1186/gb-2001-2-2-reviews1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Li W, Kang L, Piggott BJ, Feng Z, Xu XZ. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun. 2011;2:315. doi: 10.1038/ncomms1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XZ. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell. 2011;147:922–933. doi: 10.1016/j.cell.2011.08.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Stirman JN, Crane MM, Husson SJ, Wabnig S, Schultheis C, Gottschalk A, et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods. 2011;8:153–158. doi: 10.1038/nmeth.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Schroedel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods. 2013;10:1013–1020. doi: 10.1038/nmeth.2637. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES