Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2014 Apr 15;30(2):172–184. doi: 10.1007/s12264-013-1416-x

Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults

Jing Yu 1,3, Tao Su 2,4, Ting Zhou 1, Yingge He 2, Jing Lu 2, Juan Li 1,, Rongqiao He 2,
PMCID: PMC5562661  PMID: 24733650

Abstract

Recent studies have shown that the abnormal accumulation of endogenous formaldehyde could be a critical factor in age-related cognitive decline. The aim of this study was to estimate the correlation between uric formaldehyde and general cognitive abilities in a community-based elderly population, and to measure the extent and direction in which the correlation varied with demographic characteristics. Using a double-blind design, formaldehyde in human urine was analyzed by high-performance liquid chromatography (n = 604), and general cognitive abilities were measured using the Montreal Cognitive Assessment (MoCA). Demographic characteristics, in terms of age, gender, residential region, and education were taken into consideration. We found that uric formaldehyde levels were inversely correlated with the MoCA score, and the concentration varied with demographic features: higher odds of a high formaldehyde level occurred among the less educated and those living in old urban or rural areas. In cytological experiments, the level of cellular formaldehyde released into the medium increased as SH-SY5Y and BV2 cells were incubated for three days. Formaldehyde in excess impaired the processes of N2a cells and neurites of primary cultured rat hippocampal cells. However, removal of formaldehyde markedly rescued and regenerated the processes of N2a cells. These results demonstrated a negative correlation between the endogenous formaldehyde and general cognitive abilities. High formaldehyde levels could be a risk factor for cognitive impairment in older adults, and could be developed as a non-invasive marker for detection and monitoring of age-related cognitive impairment.

Keywords: uric formaldehyde, the Montreal Cognitive Assessment, education, learning, living region

Footnotes

These authors contributed equally to this work.

Contributor Information

Juan Li, Email: lijuan@psych.ac.cn.

Rongqiao He, Email: herq@sun5.ibp.ac.cn.

References

  • [1].Shi H, Wang Z. A brief review on studies of Alzheimer’s disease in China: Its mechanism, imaging and therapy. Sci China Life Sci. 2013;56:1142–1144. doi: 10.1007/s11427-013-4566-1. [DOI] [PubMed] [Google Scholar]
  • [2].Flyvholm MA, Menne T. Allergic contact dermatitis from formaldehyde. A case study focussing on sources of formaldehyde exposure. Contact Dermat. 1992;27:27–36. doi: 10.1111/j.1600-0536.1992.tb05194.x. [DOI] [PubMed] [Google Scholar]
  • [3].Perna RB, Bordini EJ, Deinzer-Lifrak M. A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure: clinical, psychometric, and functional findings. Arch Clin Neuropsychol. 2001;16:33–44. doi: 10.1093/arclin/16.1.33. [DOI] [PubMed] [Google Scholar]
  • [4].Chen K, Kazachkov M, Yu P. Effect of aldehydes derived from oxidative deamination and oxidative stress on β-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm. 2007;114:835–839. doi: 10.1007/s00702-007-0697-5. [DOI] [PubMed] [Google Scholar]
  • [5].Marceaux JC, Dilks LS, Hixson S. Neuropsychological effects of formaldehyde use. J Psychoactive Drugs. 2008;40:207–210. doi: 10.1080/02791072.2008.10400632. [DOI] [PubMed] [Google Scholar]
  • [6].Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–953. doi: 10.1016/j.cell.2004.12.012. [DOI] [PubMed] [Google Scholar]
  • [7].Wang J, Su T, Liu Y, Yue Y, He R. Neurochem Res. 2012. Postoperative Cognitive Dysfunction is Correlated with Urine Formaldehyde in Elderly Noncardiac Surgical Patients; pp. 1–10. [DOI] [PubMed] [Google Scholar]
  • [8].Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging. 2011;32:31–41. doi: 10.1016/j.neurobiolaging.2009.07.013. [DOI] [PubMed] [Google Scholar]
  • [9].Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Age. 2012. Accumulated hippocampal formaldehyde induces age-dependent memory decline; pp. 1–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Miao J, He R. Chronic formaldehyde-mediated impairments and age-related dement ia. In: Martins LM, editor. Neurodegeneration. Rijeka: InTech; 2012. pp. 59–76. [Google Scholar]
  • [11].Chen K, Maley J, Yu PH. Potential implications of endogenous aldehydes in β-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem. 2006;99:1413–1424. doi: 10.1111/j.1471-4159.2006.04181.x. [DOI] [PubMed] [Google Scholar]
  • [12].Chen JY, Sun MR, Wang XH, Lu J, Wei Y, Tan Y, et al. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells. Sci China Life Sci. 2014;57:412–421. doi: 10.1007/s11427-013-4605-y. [DOI] [PubMed] [Google Scholar]
  • [13].Hua Q, He RQ. Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett. 2002;9:349–357. doi: 10.2174/0929866023408652. [DOI] [PubMed] [Google Scholar]
  • [14].Nie CL, Zhang W, Zhang D, He RQ. Changes in conformation of human neuronal tau during denaturation in formaldehyde solution. Protein Pept Lett. 2005;12:75–78. doi: 10.2174/0929866053405931. [DOI] [PubMed] [Google Scholar]
  • [15].Yu PH, Cauglin C, Wempe KL, Gubisne-Haberle D. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal Biochem. 2003;318:285–290. doi: 10.1016/S0003-2697(03)00211-2. [DOI] [PubMed] [Google Scholar]
  • [16].Fangxu L, Jing L, Yajia X, Zhiqian T, Chunlai N, Rongqiao H. Formaldehyde-mediated chronic damage may be related to sporadic neurodegeneration. Prog in Biochem Biophys. 2008;35:394–400. [Google Scholar]
  • [17].He RQ, Lu J, Miao JY. Formaldehyde stress. Sci China Life Sci. 2010;53:1399–1404. doi: 10.1007/s11427-010-4112-3. [DOI] [PubMed] [Google Scholar]
  • [18].Lu J, Miao J, Su T, Liu Y, He R. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo. Biochim Biophys Acta. 2013;1830:4102–4116. doi: 10.1016/j.bbagen.2013.04.028. [DOI] [PubMed] [Google Scholar]
  • [19].Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, et al. Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimers Dis. 2013;37:551–563. doi: 10.3233/JAD-130602. [DOI] [PubMed] [Google Scholar]
  • [20].Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, et al. Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep. 2013;3:1807. doi: 10.1038/srep01807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Szende B, Tyihak E. Effect of formaldehyde on cell proliferation and death. Cell Biol Int. 2010;34:1273–1282. doi: 10.1042/CBI20100532. [DOI] [PubMed] [Google Scholar]
  • [22].Tong Z, Han C, Miao J, Lu J, He R. Excess endogenous formaldehyde induces memory decline. Prog Biochem Biophysics. 2011;38:575–579. doi: 10.3724/SP.J.1206.2011.00241. [DOI] [Google Scholar]
  • [23].Tong Z, Wang Y, Luo W, He R. Endogenous formaldehyde and related diseases in human. Prog Nat Sci. 2008;18:1202–1210. [Google Scholar]
  • [24].Wang WS, Hao ZH, Zhang L. Research on urine formaldehyde concentration in Alzheimer’s disease elderly and normal elderly. Chin J Geriatr Heart Brain Vessel Dis. 2010;12:721–722. [Google Scholar]
  • [25].Hao ZH, Li WJ, Li M, He RQ. Correlation of urine formaldehyde levels and mini mental state examination scores in Alzheimer’s disease. Chin J Gerontol. 2011;31:3442–3444. [Google Scholar]
  • [26].Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age. 2013;35:583–596. doi: 10.1007/s11357-012-9388-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging. 2011;32:31–41. doi: 10.1016/j.neurobiolaging.2009.07.013. [DOI] [PubMed] [Google Scholar]
  • [28].Shao C, Wang Y, Gao Y. Applications of urinary proteomics in biomarker discovery. Sci China Life Sci. 2011;54:409–417. doi: 10.1007/s11427-011-4162-1. [DOI] [PubMed] [Google Scholar]
  • [29].Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–2308. doi: 10.1212/WNL.44.12.2308. [DOI] [PubMed] [Google Scholar]
  • [30].Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. Alzheimer Dis Assoc Disord. 1997;11:33–39. doi: 10.1097/00002093-199700112-00005. [DOI] [PubMed] [Google Scholar]
  • [31].Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;39:1136–1139. doi: 10.1176/ajp.139.9.1136. [DOI] [PubMed] [Google Scholar]
  • [32].Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–2414. doi: 10.1212/WNL.43.11.2412-a. [DOI] [PubMed] [Google Scholar]
  • [33].Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32:632–637. doi: 10.1001/archneur.1975.00490510088009. [DOI] [PubMed] [Google Scholar]
  • [34].First MB, SpitzeR RL, Gibbon M, Williams JBW. User’s Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders: SCID-1 Clinician Version. Washington, DC: American Psychiatric Press; 1997. [Google Scholar]
  • [35].Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x. [DOI] [PubMed] [Google Scholar]
  • [36].Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  • [37].Luis CA, Keegan AP, Mullan M. Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry. 2009;24:197–201. doi: 10.1002/gps.2101. [DOI] [PubMed] [Google Scholar]
  • [38].Yu J, Li J, Huang X. The Beijing version of the montreal cognitive assessment as a brief screening tool for mild cognitive impairment: a community-based study. BMC Psychiatry. 2012;12:156. doi: 10.1186/1471-244X-12-156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Su T, Wei Y, He R. Assay of brain endogenous formaldehyde with 2, 4-dinitrophenylhydrazine through UV-HPLC. Prog Biochem Biophys. 2011;38:1171–1177. doi: 10.3724/SP.J.1206.2011.00407. [DOI] [Google Scholar]
  • [40].Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK. Beta-amyloid induces apoptosis in human-derived neurotypic SHSY5Y cells. Brain Res. 1996;738:196–204. doi: 10.1016/S0006-8993(96)00733-0. [DOI] [PubMed] [Google Scholar]
  • [41].Petro KA, Schengrund CL. Membrane raft disruption promotes axonogenesis in n2a neuroblastoma cells. Neurochem Res. 2009;34:29–37. doi: 10.1007/s11064-008-9625-9. [DOI] [PubMed] [Google Scholar]
  • [42].Molder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. J Microsc. 2008;232:240–247. doi: 10.1111/j.1365-2818.2008.02095.x. [DOI] [PubMed] [Google Scholar]
  • [43].Xu Z, Xu RX, Liu BS, Jiang XD, Huang T, Ding LS, et al. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion. Chin J Traumatol. 2005;8:179–182. [PubMed] [Google Scholar]
  • [44].Nie CL, Wei Y, Chen X, Liu YY, Dui W, Liu Y, et al. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One. 2007;2:e629. doi: 10.1371/journal.pone.0000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Nie CL, Wang XS, Liu Y, Perrett S, He RQ. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci. 2007;8:9. doi: 10.1186/1471-2202-8-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Heffner TG, Hartman JA, Seiden LS. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav. 1980;13:453–456. doi: 10.1016/0091-3057(80)90254-3. [DOI] [PubMed] [Google Scholar]
  • [47].Ke Y, Qin X, Zhang Y, Li H, Li R, Yuan J, et al. Hum Exp Toxicol. 2013. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives. [DOI] [PubMed] [Google Scholar]
  • [48].Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, et al. J Alzheimers Dis. 2014. A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. [DOI] [PubMed] [Google Scholar]
  • [49].Wei Y M, Liu Y. Endogenous and exogenous factors in hyperphosphorylation of tau in Alzheimer’s disease. Prog Biochem Biophys. 2012;39:778–784. doi: 10.3724/SP.J.1206.2012.00365. [DOI] [Google Scholar]
  • [50].Luo W, Li H, Zhang Y, Ang CY. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001;753:253–257. doi: 10.1016/S0378-4347(00)00552-1. [DOI] [PubMed] [Google Scholar]
  • [51].Kalász H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem. 2003;3:175–192. doi: 10.2174/1389557033488187. [DOI] [PubMed] [Google Scholar]
  • [52].Wang T, Sun Xiulian. Molecular regulation of BACE1 and its function at the early onset of Alzheimer’s disease. Prog Biochem Biophys. 2012;39:709–714. doi: 10.3724/SP.J.1206.2012.00217. [DOI] [Google Scholar]
  • [53].Lin L, Shujun X, Qinwen W. The relationship between astrocyte-mediated metabolism of β-amyloid protein and pathogenesis of the early stages of Alzheimer’s disease. Prog Biochem Biophys. 2012;39:715–720. doi: 10.3724/SP.J.1206.2012.00134. [DOI] [Google Scholar]
  • [54].Hua Q, Ding H, Mi L. Progress on Aβ-targeted therapeutic strategies for Alzheimer’s disease. Prog Biochem Biophys. 2012;39:734–740. doi: 10.3724/SP.J.1206.2012.00215. [DOI] [Google Scholar]
  • [55].Chen K, Kazachkov M, Yu PH. Effect of aldehydes derived from oxidative deamination and oxidative stress on betaamyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm. 2007;114:835–839. doi: 10.1007/s00702-007-0697-5. [DOI] [PubMed] [Google Scholar]
  • [56].Yu PH, Cauglin C, Wempe KL, Gubisne-Haberle D. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal Biochem. 2003;318:285–290. doi: 10.1016/S0003-2697(03)00211-2. [DOI] [PubMed] [Google Scholar]
  • [57].He R-Q. The research window of Alzheimer’s disease should be brought forward. Prog Biochem Biophys. 2012;39:692–697. doi: 10.3724/SP.J.1206.2012.00364. [DOI] [Google Scholar]
  • [58].LI T, QIANG M, HE R-Q. Chronic Dehydration and regularly drinking water to mitigate age-related cognitive impairment. Acta Neuropharmacologica. 2012;2:43–51. [Google Scholar]
  • [59].Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res. 2007;67:11117–11122. doi: 10.1158/0008-5472.CAN-07-3028. [DOI] [PubMed] [Google Scholar]
  • [60].Nishiyama R, Qi L, Lacey M, Ehrlich M. Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer. Mol Cancer Res. 2005;3:617–626. doi: 10.1158/1541-7786.MCR-05-0146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Han Y, Li Y, Xiao X, Liu J, Meng XL, Liu FY, et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull. 2012;28:165–172. doi: 10.1007/s12264-012-1211-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62].Dahl AR, Hadley WM. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Toxicol Appl Pharmacol. 1983;67:200–205. doi: 10.1016/0041-008X(83)90225-9. [DOI] [PubMed] [Google Scholar]
  • [63].Keys A, Taylor HL, Grande F. Basal metabolism and age of adult man. Metabolism. 1973;22:579–587. doi: 10.1016/0026-0495(73)90071-1. [DOI] [PubMed] [Google Scholar]
  • [64].Su Y, Ma Z. Research on China’s rural environmental pollution problems and corresponding countemeasures in rural modernizing process. China Population, Resources and Environment. 2006;16:12–18. [Google Scholar]
  • [65].Retfalvi T, Nemeth Z, Sarudi I, Albert L. Alteration of endogenous formaldehyde level following mercury accumulation in different pig tissues. Acta Biol Hung. 1998;49:375–379. [PubMed] [Google Scholar]
  • [66].Ely J. Mercury induced Alzheimer’s disease: accelerating incidence? Bull Environ Contam Toxicol. 2001;67:800–806. doi: 10.1007/s001280193. [DOI] [PubMed] [Google Scholar]
  • [67].Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32:632–637. doi: 10.1001/archneur.1975.00490510088009. [DOI] [PubMed] [Google Scholar]
  • [68].Del Ser T, Hachinski V, Merskey H, Munoz DG. An autopsy-verified study of the effect of education on degenerative dementia. Brain. 1999;122:2309–2319. doi: 10.1093/brain/122.12.2309. [DOI] [PubMed] [Google Scholar]
  • [69].Coppedè F. One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr Genomics. 2010;11:246–260. doi: 10.2174/138920210791233090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Li J, Yu j, Yanan N. Neuropsychological impairment characteristics of MCI and its early detection and intervention: prevent and delay the onset of AD. Prog Biochem Biophys. 2012;39:804–810. doi: 10.3724/SP.J.1206.2012.00303. [DOI] [Google Scholar]
  • [72].Machado S, Portella CE, Silva JG, Velasques B, Bastos VH, Cunha M, et al. Learning and implicit memory: mechanisms and neuroplasticity. Rev Neurol. 2008;46:543–549. [PubMed] [Google Scholar]
  • [73].Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56:1145–1146. doi: 10.1007/s11427-013-4574-1. [DOI] [PubMed] [Google Scholar]
  • [74].Shcherbakova LN, Tel’pukhov VI, Trenin SO, Bashilov IA, Lapkina TI. Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med. 1986;102:573–575. [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES