Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2015 Apr 17;31(3):307–316. doi: 10.1007/s12264-014-1521-5

Contextual influence on the tilt after-effect in foveal and para-foveal vision

Cheng Chen 2, Xianghui Chen 1, Min Gao 1, Qiong Yang 1, Hongmei Yan 1,
PMCID: PMC5563691  PMID: 25895001

Abstract

A sensory stimulus can only be properly interpreted in light of the stimuli that surround it in space and time. The tilt illusion (TI) and tilt after-effect (TAE) provide good evidence that the perception of a target depends strongly on both its spatial and temporal context. In previous studies, the TI and TAE have typically been investigated separately, so little is known about their co-effects on visual perception and information processing mechanisms. Here, we considered the influence of the spatial context and the temporal effect together and asked how center-surround context affects the TAE in foveal and para-foveal vision. Our results showed that different center-surround spatial patterns significantly affected the TAE for both foveal and para-foveal vision. In the fovea, the TAE was mainly produced by central adaptive gratings. Cross-oriented surroundings significantly inhibited the TAE, and iso-oriented surroundings slightly facilitated it; surround inhibition was much stronger than surround facilitation. In the para-fovea, the TAE was mainly decided by the surrounding patches. Likewise, a cross-oriented central patch inhibited the TAE, and an iso-oriented one facilitated it, but there was no significant difference between inhibition and facilitation. Our findings demonstrated, at the perceptual level, that our visual system adopts different mechanisms to process consistent or inconsistent central-surround orientation information and that the unequal magnitude of surround inhibition and facilitation is vitally important for the visual system to improve the detectability or discriminability of novel or incongruent stimuli.

Keywords: tilt after-effect, contextual influence, spatio-temporal context, foveal vision, para-foveal vision

References

  • [1].Schwartz O, Hsu A, Dayan P. Space and time in visual context. Nature Rev Neurosci. 2007;8:522–535. doi: 10.1038/nrn2155. [DOI] [PubMed] [Google Scholar]
  • [2].Schwartz O, Sejnowski T, Dayan P. Perceptual organization in the tilt illusion. J Vis. 2009;9:1–20. doi: 10.1167/9.4.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Clifford C, Spehar B, Solomon S, Martin P, Zaidi Q. Interactions between color and luminance in the perception of orientation. J Vis. 2003;3:106–115. doi: 10.1167/3.2.1. [DOI] [PubMed] [Google Scholar]
  • [4].Knapen T, Rolfs M, Wexler M, Cavanagh P. The reference frame of the tilt aftereffect. J Vis. 2010;10:1–13. doi: 10.1167/10.7.510. [DOI] [PubMed] [Google Scholar]
  • [5].Mareschal I, Clifford CW. Dynamics of unconscious contextual effects in orientation processing. Proc Natl Acad Sci U S A. 2012;109:7553–7558. doi: 10.1073/pnas.1200952109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Jin D Z, Dragoi V, Sur M, Seung HS. Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex. J Neurophysiol. 2005;94:4038–4050. doi: 10.1152/jn.00571.2004. [DOI] [PubMed] [Google Scholar]
  • [7].Clifford CW, Wenderoth P, Spehar B. A functional angle on some after-effects in cortical vision. Proc Biol Sci. 2000;267:1705–1710. doi: 10.1098/rspb.2000.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Wissig S, Kohn A. The influence of surround suppression on adaptation effects in primary visual cortex. J Neurophysiol. 2012;107:3370–3384. doi: 10.1152/jn.00739.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Guo K, Nevado A, Robertson R, Pulgarin M, Thiele A, et al. Effects on orientation perception of manipulating the spatiotemporal prior probability of stimuli. Vision Res. 2004;44:2349–2358. doi: 10.1016/j.visres.2004.04.014. [DOI] [PubMed] [Google Scholar]
  • [10].Durant S, Clifford CW. Dynamics of the influence of segmentation cues on orientation perception. Vision Res. 2006;46:2934–2940. doi: 10.1016/j.visres.2006.02.027. [DOI] [PubMed] [Google Scholar]
  • [11].Xing J, Heeger DJ. Center-surround interactions in foveal and peripheral vision. Vision Res. 2000;40:3065–3072. doi: 10.1016/S0042-6989(00)00152-8. [DOI] [PubMed] [Google Scholar]
  • [12].Liu TS, Larsson J, Carrasco M. Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron. 2007;55:313–323. doi: 10.1016/j.neuron.2007.06.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10:433–436. doi: 10.1163/156856897X00357. [DOI] [PubMed] [Google Scholar]
  • [14].Pelli DG. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat Vis. 1997;10:437–442. doi: 10.1163/156856897X00366. [DOI] [PubMed] [Google Scholar]
  • [15].Melcher D. Predictive remapping of visual features precedes saccadic eye movements. Nat Neurosci. 2007;10:903–907. doi: 10.1038/nn1917. [DOI] [PubMed] [Google Scholar]
  • [16].Zimmermann E, Morrone MC, Fink GR, Burr D. Spatiotopic neur al representations develop slowly across saccades. Curr Biol. 2013;23:193–194. doi: 10.1016/j.cub.2013.01.065. [DOI] [PubMed] [Google Scholar]
  • [17].Parker D. Contrast and size variables and the tilt after-effect. Q J Exp Psychol. 1972;24:1–7. doi: 10.1080/14640747208400260. [DOI] [PubMed] [Google Scholar]
  • [18].Solomon JA, Morgan MJ. Stochastic re-calibration: contextual effects on perceived tilt. Proc Biol Sci. 2006;273:2681–2686. doi: 10.1098/rspb.2006.3634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Melcher D. Selective attention and the active remapping of object features in trans-saccadic perception. Vision Res. 2009;49:1249–1255. doi: 10.1016/j.visres.2008.03.014. [DOI] [PubMed] [Google Scholar]
  • [20].Zchaluk K, Foster DH. Model-free estimation of the psychometric function. Atten Percept Psychophys. 2009;71:1414–1425. doi: 10.3758/APP.71.6.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Muir D, Over R. Tilt aftereffects in central and peripheral vision. J Exp Psychol. 1970;85:165–170. doi: 10.1037/h0029509. [DOI] [PubMed] [Google Scholar]
  • [22].Greenwood JA, Bex PJ, Dakin SC. Crowding changes appearance. Curr Biol. 2010;20:496–501. doi: 10.1016/j.cub.2010.01.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Spivey MJ, Spirn M. Selective visual attention modulates the direct tilt aftereffect. Percept Psychophys. 2000;62:1525–1533. doi: 10.3758/BF03212153. [DOI] [PubMed] [Google Scholar]
  • [24].Li CY, Li W. Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons: classification and tuning properties. Vision Res. 1994;34:2337–2355. doi: 10.1016/0042-6989(94)90280-1. [DOI] [PubMed] [Google Scholar]
  • [25].Gilbert CD, Wiesel TN. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 1990;30:1689–1701. doi: 10.1016/0042-6989(90)90153-C. [DOI] [PubMed] [Google Scholar]
  • [26].Yao HS, Li CY. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex. Neuron. 2002;35:547–553. doi: 10.1016/S0896-6273(02)00782-1. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES