Abstract
Current evidence suggests a central role for autophagy in many inflammatory brain disorders, including Alzheimer’s disease (AD). Furthermore, it is also well accepted that some i nhalation anesthetics, such as isoflurane, may cause AD-like neuropathogenesis and resultant postoperative cognitive dysfunction, especially in the elderly population. However, the impact of inhalation anesthetics on autophagic components in the brain remains to be documented. Hence, our objective was to investigate the effects of different durations of isoflurane exposure on hippocampus-dependent learning and hippocampal autophagy in aged rats. Aged Sprague-Dawley rats (20 months old) were randomly exposed to 1.5% isoflurane or 100% oxygen for 1 or 4 h. Animals were then trained in the Morris water maze (4 trials/day for 5 consecutive days). Hippocampal phagophore formation markers, beclin 1 and protein microtubule-associated protein 1 light chain-3B (LC3B), as well as p62, an indicator of autophagic fl ux, were quantifi ed by western blotting. There was no significant difference in the escape latencies and time spent in the target quadrant, as well as hippocampal expression of beclin 1, LC3B-II, and p62 at 24 h post-anesthesia between the 1-h isoflurane-exposed rats and their controls (P >0.05). Four-hour exposure to isofl urane resulted in spatial learning and memory deficits, as evidenced by prolonged escape latencies on days 4 and 5 post-anesthesia and less time spent in the target quadrant than sham-exposed animals (P <0.05). These events were accompanied by a decline in hippocampal expression of LC3B-I, LC3B-II, and beclin 1 24 h after isofl urane (P <0.01 and P <0.05). Nevertheless, no significant change in p62 expression was found. Further kinetics study of autophagic changes induced by 4 h of isofl urane showed a transient upregulation of LC3B-I, LC3B-II, and beclin 1 at the end of exposure and a subsequent striking decrease w ithin 12–24 h post-anesthesia (P <0.05). Hippocampal p62 p eaked at 6 h but subsequently resolved. These results from our pilot in vivo study support a duration-dependent relationship between 1.5% isoflurane exposure, and s patial cognitive function as well as hippocampal phagophore formation.
Keywords: autophagy, phagophore formation, cognitive dysfunction
Contributor Information
De-Hua Chui, Email: dchui@bjmu.edu.cn.
Xiang-Yang Guo, Email: puthmzk@163.com.
References
- [1].Burns A, Iliffe S. Dementia. BMJ. 2009;338:b75. doi: 10.1136/bmj.b75. [DOI] [PubMed] [Google Scholar]
- [2].Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 2015;11:710–717. doi: 10.1016/j.jalz.2014.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Kapila AK, Watts HR, Wang T, Ma D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer's disease development: biomarkers and preventive strategies. J Alzheimers Dis. 2014;41:1–13. doi: 10.3233/JAD-132258. [DOI] [PubMed] [Google Scholar]
- [4].Hussain M, Berger M, Eckenhoff RG, Seitz DP. General anesthetic and the risk of dementia in elderly patients: current insights. Clin Interv Aging. 2014;9:1619–1628. doi: 10.2147/CIA.S49680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110:548–555. doi: 10.1097/ALN.0b013e318195b569. [DOI] [PubMed] [Google Scholar]
- [6].Hartholt KA, Cammen TJ, Klimek M. Postoperative cognitive dysfunction in geriatric patients. Z Gerontol Geriatr. 2012;45:411–416. doi: 10.1007/s00391-012-0326-2. [DOI] [PubMed] [Google Scholar]
- [7].Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106:436–443. doi: 10.1097/00000542-200703000-00007. [DOI] [PubMed] [Google Scholar]
- [8].Culley DJ, Baxter MG, Yukhananov R, Crosby G. Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004;100:309–314. doi: 10.1097/00000542-200402000-00020. [DOI] [PubMed] [Google Scholar]
- [9].Li ZQ, Rong XY, Liu YJ, Ni C, Tian XS, Mo N, et al. Activation of the canonical nuclear factor-kappaB pathway is involved in isoflurane-induced hippocampal interleukin-1beta elevation and the resultant cognitive deficits in aged rats. Biochem Biophys Res Commun. 2013;438:628–634. doi: 10.1016/j.bbrc.2013.08.003. [DOI] [PubMed] [Google Scholar]
- [10].Zhang L, Zhang J, Yang L, Dong Y, Zhang Y, Xie Z. Isofl urane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br J Anaesth. 2013;1:i82–i91. doi: 10.1093/bja/aet115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, et al. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 2008;64:618–627. doi: 10.1002/ana.21548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 2009;66:620–631. doi: 10.1001/archneurol.2009.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Zhang B, Tian M, Zheng H, Zhen Y, Yue Y, Li T, et al. Effects of anesthetic isoflurane and desflurane on human cerebrospinal fl uid Abeta and tau level. Anesthesiology. 2013;119:52–60. doi: 10.1097/ALN.0b013e31828ce55d. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Li C, Liu S, Xing Y, Tao F. The role of hippocampal tau protein phosphorylation in isofl urane-induced cognitive dysfunction in transgenic APP695 mice. Anesth Analg. 2014;119:413–419. doi: 10.1213/ANE.0000000000000315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Ni C, Tan G, Luo A, Qian M, Tang Y, Zhou Y, et al. Melatonin premedication attenuates isoflurane anesthesia-induced beta-amyloid generation and cholinergic dysfunction in the hippocampus of aged rats. Int J Neurosci. 2013;123:213–220. doi: 10.3109/00207454.2012.742895. [DOI] [PubMed] [Google Scholar]
- [16].Vlisides P, Xie Z. Neurotoxicity of general anesthetics: an update. Curr Pharm Des. 2012;18:6232–6240. doi: 10.2174/138161212803832344. [DOI] [PubMed] [Google Scholar]
- [17].Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell. 2002;1:11–21. doi: 10.1128/EC.01.1.11-21.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64:113–122. doi: 10.1093/jnen/64.2.113. [DOI] [PubMed] [Google Scholar]
- [19].Nixon RA. A utophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120:4081–4091. doi: 10.1242/jcs.019265. [DOI] [PubMed] [Google Scholar]
- [20].Liang JH, Jia JP. Dysfunctional autophagy in Alzheimer's disease: pathogenic roles and therapeutic implications. Neurosci Bull. 2014;30:308–316. doi: 10.1007/s12264-013-1418-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Francois A, Terro F, Janet T, Rioux B A, Paccalin M, Page G. Involvement of interleukin-1beta in the autophagic process of microglia: relevance to Alzheimer's disease. J Neuroinfl ammation. 2013;10:151. doi: 10.1186/1742-2094-10-151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Francois A, Rioux B A, Quellard N, Fernandez B, Janet T, Chassaing D, et al. Longitudinal follow-up of autophagy and infl ammation in brain of APPswePS1dE9 transgenic mice. J Neuroinfl ammation. 2014;11:139. doi: 10.1186/s12974-014-0139-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Stratmann G, Sall JW, Bell JS, Alvi RS, May LV, Ku B, et al. Isofl urane does not affect brain cell death, hippocampal neurogenesis, or long-term neurocognitive outcome in aged rats. Anesthesiology. 2010;112:305–315. doi: 10.1097/ALN.0b013e3181ca33a1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Li Z, Cao Y, Li L, Liang Y, Tian X, Mo N, et al. Prophylactic angiotensin type 1 receptor antagonism confers neuroprotection in an aged rat model of postoperative cognitive dysfunction. Biochem Biophys Res Commun. 2014;449:74–80. doi: 10.1016/j.bbrc.2014.04.153. [DOI] [PubMed] [Google Scholar]
- [25].Hao HH, Wang L, Guo ZJ, Bai L, Zhang RP, Shuang WB, et al. Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats. Neurosci Bull. 2013;29:484–492. doi: 10.1007/s12264-013-1355-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49. doi: 10.1016/j.pneurobio.2013.10.004. [DOI] [PubMed] [Google Scholar]
- [27].Kashiwagi A, Hosokawa S, Maeyama Y, Ueki R, Kaneki M, Martyn JA, et al. Anesthesia with disuse leads to autophagy up-regulation in the skeletal muscle. Anesthesiology. 2015;122:1075–1083. doi: 10.1097/ALN.0000000000000561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Sheng R, Zhang TT, Felice VD, Qin T, Qin ZH, Smith CD, et al. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J Biol Chem. 2014;289:20845–20857. doi: 10.1074/jbc.M114.578120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, et al. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition defi cits. Behav Brain Res. 2014;264:82–90. doi: 10.1016/j.bbr.2014.02.005. [DOI] [PubMed] [Google Scholar]
- [30].Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171:603–614. doi: 10.1083/jcb.200507002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Ding Y, Chang C, Xie L, Chen Z, Ai H. Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca(2)(+) overload and endoplasmic reticulum stress-induced apoptosis pathway. Chin Med J (Engl) 2014;127:3265–3271. [PubMed] [Google Scholar]
- [32].Wei H, Inan S. Dual e ffects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Prog Neuropsychopharmacol Biol Psychiatry. 2013;47:156–161. doi: 10.1016/j.pnpbp.2013.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Zuo Z. Are volatile an esthetics neuroprotective or neurotoxic? Med Gas Res. 2012;2:10. doi: 10.1186/2045-9912-2-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Haseneder R, Starker L, Berkmann J, Kellermann K, Jungwirth B, Blobner M, et al. Sevoflurane anesthesia improves cognitive performance in mice, but does not infl uence in vitro long-term potentation in hippocampus CA1 stratum radiatum. PLoS One. 2013;8:e64732. doi: 10.1371/journal.pone.0064732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].Rammes G, Starker LK, Haseneder R, Berkmann J, Plack A, Zieglgansberger W, et al. Isofl urane anaesthesia reversibly improves cognitive function and long-term potentiation (LTP) via an up-regulation in NMDA receptor 2B subunit expression. Neuropharmacology. 2009;56:626–636. doi: 10.1016/j.neuropharm.2008.11.002. [DOI] [PubMed] [Google Scholar]
- [36].Lin D, Zuo Z. Isofl uran e induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology. 2011;61:1354–1359. doi: 10.1016/j.neuropharm.2011.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Culley DJ, Baxter M, Yukhananov R, Crosby G. The memory effects of general anesthesia persist for weeks in young and aged rats. Anesth Analg. 2003;96:1004–1009. doi: 10.1213/01.ANE.0000052712.67573.12. [DOI] [PubMed] [Google Scholar]