Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2015 Aug 29;31(6):649–662. doi: 10.1007/s12264-015-1557-1

Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder

Michael A Corner 1, Carlos H Schenck 2,3,
PMCID: PMC5563724  PMID: 26319263

Abstract

An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as ‘rapid-BODY-movement’ (RBM) sleep. The term ‘rapid-EYE-movement (REM) sleep’, characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with ‘paradoxical arousal’ of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as ‘REM sleep behavior disorder (RBD)’, which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.

Keywords: sleep, development, evolution, spike-train analysis, spontaneous motility, neuronal networks, neuroplasticity, REM sleep behavior disorder

References

  • [1].Corner MA, van der Togt C. No phylogeny without ontogeny–a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci Bull. 2012;28:25–38. doi: 10.1007/s12264-012-1062-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Siegel J. Do all animals sleep? Trends Neurosci. 2008;31:208–213. doi: 10.1016/j.tins.2008.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Corner MA. Sleep and the beginnings of behavior in the animal kingdom. Prog Neurobiol. 1977;8:279–295. doi: 10.1016/0301-0082(77)90008-9. [DOI] [PubMed] [Google Scholar]
  • [4].Corner MA. Call it sleep–what animals without backbones can tell us about the phylogeny of intrinsically generated neuromotor rhythms during early development. Neurosci Bull. 2013;29:373–380. doi: 10.1007/s12264-013-1313-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Jouvet M. Cambridge (MA): MIT Press. 1992. The Paradox of Sleep. [Google Scholar]
  • [6].Jouvet M. Paradoxical sleep–a study of its nature and mechanisms. Prog Brain Res. 1965;18:20–57. doi: 10.1016/S0079-6123(08)63582-7. [DOI] [PubMed] [Google Scholar]
  • [7].Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J Physiol (London) 2007;584:735–741. doi: 10.1113/jphysiol.2007.140160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. Monotremes and the evolution of rapid eye movement sleep. Phil Trans Roy Soc Lond (B) 1998;353:1147–1157. doi: 10.1098/rstb.1998.0272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Lesku JA, Meyer LCR, Fuller A, Malloney S D, Omo G, Vyssotsky AL, Rattenborg NC. Ostriches sleep like platypuses. PLoS One. 2011;6:23203. doi: 10.1371/journal.pone.0023203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Corner MA. Ontogeny of brain sleep mechanisms. In: McGinty DJ, editor. Mechanisms of Sleep. New York, NY: Raven Press; 1985. pp. 175–192. [Google Scholar]
  • [11].Roberts A. 2000. Early functional organisation of spinal neurons in developing lower vertebrates. Brain Res Bull. 2000;53:585–93. doi: 10.1016/s0361-9230(00)00392-0. [DOI] [PubMed] [Google Scholar]
  • [12].Dickenson P. Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol. 2006;16:1–11. doi: 10.1016/j.conb.2006.01.012. [DOI] [PubMed] [Google Scholar]
  • [13].Chow HM, Horovitz SG, Carr WS, Picchioni D, Coddington N, Fukunaga M, et al. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A. 2013;110:10300–10308. doi: 10.1073/pnas.1217691110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Rattenborg NC, Martinez-Gonzalez D, Lesku JA. Avian sleep homeostasis: convergenent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav Rev. 2009;33:253–270. doi: 10.1016/j.neubiorev.2008.08.010. [DOI] [PubMed] [Google Scholar]
  • [15].Corner MA. From neural plate to cortical arousal–a neuronal network theory of sleep derived from in vitro “model” systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system. Brain Sci. 2013;3:800–820. doi: 10.3390/brainsci3020800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Krueger JM, et al. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008;9:910–919. doi: 10.1038/nrn2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Krueger J H J R D B DH. Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci. 2013;38:2199–2209. doi: 10.1111/ejn.12238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Hamburger V. Some aspects of the embryology of behavior. Quart Rev Biol. 1963;38:342–365. doi: 10.1086/403941. [DOI] [PubMed] [Google Scholar]
  • [19].Robinson SR, Smotherman WP. Fundamental motor patterns of the mammalian fetus. J Neurobiol. 1992;23:1574–1600. doi: 10.1002/neu.480231013. [DOI] [PubMed] [Google Scholar]
  • [20].Hamburger V, Wenger E, Oppenheim RW. Motility in the chick embryo in the absence of sensory input. J Exp Zool. 1966;162:133–160. doi: 10.1002/jez.1401620202. [DOI] [Google Scholar]
  • [21].Corner MA, Crain SM. Spontaneous contractions and bioelectric activity after differentiation in culture of presumptive neuromuscular tissues of the early frog embryo. Experientia. 1965;21:422–428. doi: 10.1007/BF02139785. [DOI] [PubMed] [Google Scholar]
  • [22].Corner MA, Crain SM. Patterns of spontaneous bioelectric activity during maturation in culture of fetal rodent medulla and spinal cord tissues. J Neurobiol. 1972;3:25–45. doi: 10.1002/neu.480030104. [DOI] [PubMed] [Google Scholar]
  • [23].Mahowald MW, Schenck CH. Evolving concepts of human state dissociation. Arch Ital Biol. 2001;139:269–300. [PubMed] [Google Scholar]
  • [24].Bekoff A, Stein PSG, Hamburger V. Coordinated motor output in the hind limb of the 7-day chick embryo. Proc Natl Acad Sci U S A. 1975;72:1245–1248. doi: 10.1073/pnas.72.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Suzue T, Shinoda Y. Highly reproducible spatiotemporal patterns of mammalian embryonic movements at the developmental stage of the earliest spontaneous motility. Eur J Neurosci. 1999;11:2697–2710. doi: 10.1046/j.1460-9568.1999.00686.x. [DOI] [PubMed] [Google Scholar]
  • [26].Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol. 1998;37:622–632. doi: 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • [27].Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep. 2002;25:120–138. doi: 10.1093/sleep/25.2.120. [DOI] [PubMed] [Google Scholar]
  • [28].Fortin G, Kato F, Lumsden A, Champagnat J. Rhythm generation in the segmented hindbrain of chick embryos. J Physiol (London) 1995;486:735–744. doi: 10.1113/jphysiol.1995.sp020849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Blumberg MS, Seelke AMH. The form and function of infant sleep. From muscle to neocortex. In: Blumberg M, Freeman J, Robinson S, editors. The Oxford Handbook of Developmental Behavioral Neuroscience. New York, NY: Oxford University Press; 2010. pp. 391–423. [Google Scholar]
  • [30].Balaban E, Desco M, Vaquero JJ. Waking-like brain function in embryos. Curr Biol. 2012;22:852–861. doi: 10.1016/j.cub.2012.03.030. [DOI] [PubMed] [Google Scholar]
  • [31].Corner MA. Rhythmicity in the early swimming of anuran larvae. J Embryol Exp Morphol. 1964;12:665–671. [PubMed] [Google Scholar]
  • [32].Corner MA, Bot HPC. Somatic motility during the embryonic period in birds, and its relation to behavior after hatching. Prog Brain Res. 1967;26:214–236. doi: 10.1016/S0079-6123(08)61424-7. [DOI] [PubMed] [Google Scholar]
  • [33].Seelke AMH, Karlsson KA, Gall AJ, Blumberg MS. Extraocular muscle activity, rapid eye movements and the development of active and quiet sleep. Eur J Neurosci. 2005;22:911–920. doi: 10.1111/j.1460-9568.2005.04322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Thurber A, Jha SK, Coleman T, Frank MG. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo) Behav Brain Res. 2008;189:41–51. doi: 10.1016/j.bbr.2007.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Dreyfus-Brisac C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev Psychobiol. 1970;3:91–121. doi: 10.1002/dev.420030203. [DOI] [PubMed] [Google Scholar]
  • [36].Romanini C, Rizzo G. Fetal behaviour in normal and compromised fetuses. An overview. Early Hum Dev. 1995;43:117–31. doi: 10.1016/0378-3782(95)01667-8. [DOI] [PubMed] [Google Scholar]
  • [37].Branchereau P, Morin D, Bonnot A, Ballion B, Chapron J, Viala D. Development of lumbar rhythmic networks: from embryonic to neonatal locomotor-like patterns in the mouse. Brain Res Bull. 2000;53:711–718. doi: 10.1016/S0361-9230(00)00403-2. [DOI] [PubMed] [Google Scholar]
  • [38].Tassinari CA, Rubboli G, Gardella E, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach. Neurol Sci. 2005;26:s225–s232. doi: 10.1007/s10072-005-0492-8. [DOI] [PubMed] [Google Scholar]
  • [39].Decker JD, Hamburger V. The influence of different brain regions on periodic motility of the chick embryo. J Exp Zool. 1967;165:371–383. doi: 10.1002/jez.1401650306. [DOI] [PubMed] [Google Scholar]
  • [40].Ren J, Greer JJ. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. J Neurophysiol. 2003;89:1182–1195. doi: 10.1152/jn.00539.2002. [DOI] [PubMed] [Google Scholar]
  • [41].Hughes SM, Easton CR, Bosma MM. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain. Dev Neurobiol. 2009;69:477–490. doi: 10.1002/dneu.20712. [DOI] [PubMed] [Google Scholar]
  • [42].Momose-Sato K, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci. 2013;7:36. doi: 10.3389/fncel.2013.00036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Prechtl HFR. The behavioral states of the newborn. Brain Res. 1974;76:185–212. doi: 10.1016/0006-8993(74)90454-5. [DOI] [PubMed] [Google Scholar]
  • [44].Lesku JA, Martinez-Gonzalez D, Rattenborg NC. Sleep and sleep states: phylogeny and ontogeny. In: LR S, editor. Encyclopedia Neuroscience. Oxford: Academic Press; 2009. pp. 963–971. [Google Scholar]
  • [45].Luppi PH, Clement O, Sapin E, Gervasoni D, Peyron C, Leger L, et al. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev. 2011;15:153–163. doi: 10.1016/j.smrv.2010.08.002. [DOI] [PubMed] [Google Scholar]
  • [46].Provine RR. Embryonic spinal cord: synchrony and spatial distribution of polyneuronal burst discharges. Brain Res. 1971;29:155–158. doi: 10.1016/0006-8993(71)90428-8. [DOI] [PubMed] [Google Scholar]
  • [47].Rosato-Siri M, Zoccolan D, Furlan F, Ballerini L. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: A study in organotypic cultures. Eur J Neurosci. 2004;20:2697–2710. doi: 10.1111/j.1460-9568.2004.03740.x. [DOI] [PubMed] [Google Scholar]
  • [48].Corner MA, Mirmiran M. Arousal episodes during sleep in the neonatal rat. Neurosci Lett. 1983;42:45–48. doi: 10.1016/0304-3940(83)90419-6. [DOI] [PubMed] [Google Scholar]
  • [49].McVea DA, Mohajerani MH, Murphy TH. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci. 2012;32:10982–10994. doi: 10.1523/JNEUROSCI.1322-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Mohns EJ, Blumberg MS. Neocortical activation of the hippocampus during sleep in infant rats. J Neurosci. 2010;30:3438–3449. doi: 10.1523/JNEUROSCI.4832-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Blumberg MS, Lucas DE. A developmental and component analysis of active sleep. Dev Psychobiol. 1996;29:1–22. doi: 10.1002/(SICI)1098-2302(199601)29:1<1::AID-DEV1>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  • [52].Shaffery JP, Roffwarg H. The ontogenetic hypothesis of rapid eye movement sleep function revisited. In: Frank MG, editor. Current Advances in Sleep Biology. Hauppauge, NY: Nova Science; 2009. pp. 177–216. [Google Scholar]
  • [53].Tinbergen N. A Study of Instinct. Oxford (UK): Oxford University Press; 1950. [Google Scholar]
  • [54].Meinertzhagen IA, Lemaire P, Okamura Y. The neurobiology of the ascidian tadpole larva: recent developments in an ancient chordate. Annu Rev Neurosci. 2004;27:453–485. doi: 10.1146/annurev.neuro.27.070203.144255. [DOI] [PubMed] [Google Scholar]
  • [55].Brown ER, Nishino A, Bone Q, Meinertzhagen IA, Okamura Y. GABAergic synaptic transmission modulates swimming in the ascidian larva. Eur J Neurosci. 2005;22:2541–2548. doi: 10.1111/j.1460-9568.2005.04420.x. [DOI] [PubMed] [Google Scholar]
  • [56].Erwin D, Valentine JW. The Cambrian Explosion–the Construction of Animal Diversity. 2013. p. 406. [Google Scholar]
  • [57].Corner MA. Postnatal persistence of episodic spontaneous rapid-body-movement bursts and twitches in the cuttlefish, Sepia officinalis. Behaviour. 2013;150:939–950. [Google Scholar]
  • [58].Frank MG, Waldrop RH, Dumoulin M, Aton S, Boal J. A preliminary analysis of sleep-like states in the cuttlefish Sepia officinalis. PLOS One. 2012;7:e38125. doi: 10.1371/journal.pone.0038125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Karlsson K, Blumberg MS. Active medullary control of atonia in week-old rats. Neuroscience. 2005;130:275–283. doi: 10.1016/j.neuroscience.2004.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Frank MG, Heller HC. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J Sleep Res. 2003;12:25–34. doi: 10.1046/j.1365-2869.2003.00339.x. [DOI] [PubMed] [Google Scholar]
  • [61].Corner MA, Kwee P. Cyclic EEG and motility patterns during sleep in restrained infant rats. Electroenceph Clin Neurophysiol. 1976;41:64–72. doi: 10.1016/0013-4694(76)90215-7. [DOI] [PubMed] [Google Scholar]
  • [62].Baker RE, Corner MA, van Pelt J. Spontaneous firing patterns in sagittal ‘mega’ slices of cerebral neocortex. Brain Res. 2006;1101:29–35. doi: 10.1016/j.brainres.2006.05.028. [DOI] [PubMed] [Google Scholar]
  • [63].Canepari M, Bove M, Maeda E, Capello M, Kawana A. Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biol Cyber. 1997;72:153–162. doi: 10.1007/s004220050376. [DOI] [PubMed] [Google Scholar]
  • [64].Lemieux M, Chen JY, Lonjers P B M, Timofeev I. The impact of cortical deafferentation on the neocortical slow oscillation. J Neurosci. 2014;34:5689–5703. doi: 10.1523/JNEUROSCI.1156-13.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of spontaneously active developing neural networks–an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobeh Rev. 2002;26:127–185. doi: 10.1016/S0149-7634(01)00062-8. [DOI] [PubMed] [Google Scholar]
  • [66].Corner MA, Ramakers GJ. Spontaneous firing as an epigenetic factor in brain development—physiological consequences of chronic tetrodotoxin and picrotoxin exposure on cultured rat neocortex neurons. Dev Brain Res. 1992;65:57–64. doi: 10.1016/0165-3806(92)90008-K. [DOI] [PubMed] [Google Scholar]
  • [67].Chen X, Dzakpasu R. Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks. Physical Rev. 2010;82:031907. doi: 10.1103/PhysRevE.82.031907. [DOI] [PubMed] [Google Scholar]
  • [68].Corner MA, Baker RE, van Pelt J, Wolters PS. Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. Prog Brain Res. 2005;147:231–248. doi: 10.1016/S0079-6123(04)47018-6. [DOI] [PubMed] [Google Scholar]
  • [69].Kaufman M, Reinartz S, Ziv NE. Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biol. 2014;12:83. doi: 10.1186/s12915-014-0083-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci. 2011;34:1677–1686. doi: 10.1111/j.1460-9568.2011.07878.x. [DOI] [PubMed] [Google Scholar]
  • [71].Blumberg MS. Beyond dreams: do sleep-related movements contribute to brain development? Front Neurol. 2010;1:140. doi: 10.3389/fneur.2010.00140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [72].Mirmiran M, van Poll NE, Corner MA, van Ooyen HG, Bour HL. Suppression of active sleep by chronic treatment with clomipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res. 1981;204:129–146. doi: 10.1016/0006-8993(81)90657-0. [DOI] [PubMed] [Google Scholar]
  • [73].Seelke AMH, Blumberg MS. The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. Sleep. 2008;31:891–899. doi: 10.1093/sleep/31.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [74].Fortin G, Jungbluth S, Lumsden A, Champagnat J. Segmental specification of GABAergic inhibition during development of hindbrain neural networks. Nat Neurosci. 1999;2:873–877. doi: 10.1038/13172. [DOI] [PubMed] [Google Scholar]
  • [75].Brooks PL, Peever JH. Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci. 2011;31:7111–7121. doi: 10.1523/JNEUROSCI.0347-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci. 2012;32:9785–9795. doi: 10.1523/JNEUROSCI.0482-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [77].Luppi Brainstem mechanisms of paradoxical (REM) sleep generation. Pflueger’s Arch/Eur J Physiol. 2012;463:43–52. doi: 10.1007/s00424-011-1054-y. [DOI] [PubMed] [Google Scholar]
  • [78].Morrison A. A window on the sleeping brain. Sci Amer. 1983;248:94–102. doi: 10.1038/scientificamerican0483-94. [DOI] [PubMed] [Google Scholar]
  • [79].Mirmiran M. ‘Oneiric’ behavior during active sleep induced by bilateral lesions of the pontine tegmentum in juvenile rats. In: Koella WP, editor. Sleep: Sixth European Congress of Sleep Research. Basel: Karger. 1982. pp. 236–239. [Google Scholar]
  • [80].Corner MA, Partiman T, Mirmiran M, Bour HL. Effects of pontine lesions on brainstem polyneuronal activity during sleep in infant rats. Exp Neurol. 1984;4:489–493. doi: 10.1016/0014-4886(84)90198-5. [DOI] [PubMed] [Google Scholar]
  • [81].Huisjes H. Problems in studying functional teratogenicity in man. Prog Brain Res. 1988;73:51–58. doi: 10.1016/S0079-6123(08)60496-3. [DOI] [PubMed] [Google Scholar]
  • [82].Champagnat J, Thoby-Brisson M, Fortin G. Prog Brain Res. 2010. Genetic factors determining the functional organization of neural circuits controlling rhythmic movements; p. 187. [DOI] [PubMed] [Google Scholar]
  • [83].Sheldon SH, Jacobsen J. REM-sleep motor disorder in children. J Child Neurol. 1998;13:257–260. doi: 10.1177/088307389801300603. [DOI] [PubMed] [Google Scholar]
  • [84].Yeh SB, Schenck CH. A case of marital discord and secondary depression with attempted suicide resulting from REM Sleep Behavior Disorder in a 35 year-old woman. Sleep Med. 2004;5:151–154. doi: 10.1016/j.sleep.2003.09.008. [DOI] [PubMed] [Google Scholar]
  • [85].Schenck CH, Hurwitz TD, Mahowald MW. REM sleep behavior disorder: an update on a series of 96 patients and a review of the world literature. J Sleep Res. 1993;2:224–231. doi: 10.1111/j.1365-2869.1993.tb00093.x. [DOI] [PubMed] [Google Scholar]
  • [86].Schenck CH, Boyd JL, Mahowald MW. A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically —confirmed cases. Sleep. 1997;20:972–981. doi: 10.1093/sleep/20.11.972. [DOI] [PubMed] [Google Scholar]
  • [87].Bonakis A, Howard RS, Ebrahim IO, Merritt S, Williams A. REM sleep behaviour disorder and its associations in young patients. Sleep Med. 2009;10:641–645. doi: 10.1016/j.sleep.2008.07.008. [DOI] [PubMed] [Google Scholar]
  • [88].Oudiette D, Leu-Semenescu S, Roze E, Vidailhet M, de Cock VC, Golmard JL, et al. A motor signature of REM sleep behavior disorder. Mov Disord. 2012;27:428–431. doi: 10.1002/mds.24044. [DOI] [PubMed] [Google Scholar]
  • [89].Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Peralta C M J, et al. Video analysis of motor events in REM sleep behavior disorder. Mov Disord. 2007;22:1464–1470. doi: 10.1002/mds.21561. [DOI] [PubMed] [Google Scholar]
  • [90].Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Poewe W H B. The relation between abnormal behaviors and REM sleep microstructure in patients with REM sleep behavior disorder. Sleep Med. 2009;10:174–181. doi: 10.1016/j.sleep.2008.01.003. [DOI] [PubMed] [Google Scholar]
  • [91].Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature. 2005;437:1279–1285. doi: 10.1038/nature04287. [DOI] [PubMed] [Google Scholar]
  • [92].Mahowald M C, Bornemann MA, Schenck CH. State dissociation, human behavior and consciousness. Curr Top Med Chem. 2011;11:2392–2402. doi: 10.2174/156802611797470277. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES