Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2015 Oct 20;31(6):697–704. doi: 10.1007/s12264-015-1562-4

Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials

Logan J Voss 1,, James W Sleigh 2
PMCID: PMC5563729  PMID: 26480876

Abstract

Despite their ubiquitous use for rendering patients unconscious for surgery, our understanding of how general anesthetics cause hypnosis remains rudimentary at best. Recent years have seen increased interest in “top-down” cortico-centric theories of anesthetic action. The aim of this study was to explore this by investigating direct cortical effects of anesthetics on cerebrocortical evoked potentials in isolated mouse brain slices. Evoked potentials were elicited in cortical layer IV by electrical stimulation of the underlying white matter. The effects of three anesthetics (ketamine, etomidate, and isoflurane) on the amplitude, latency, and slope of short-latency evoked potentials were quantified. The N2/P3/N4 potentials–which represent the early cortical response–were enhanced by etomidate (increased P3-N4 slope, P <0.01), maintained by ketamine, and reduced by isoflurane (lower N2/P3 amplitude, P <0.01). These effects closely resemble those seen in vivo for the same drugs and point to a cortical mechanism independent of effects on subcortical structures such as the thalamus.

Keywords: anesthesia, evoked potentials, cortical slice, thalamus

References

  • [1].Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000;9:370–386. doi: 10.1006/ccog.1999.0423. [DOI] [PubMed] [Google Scholar]
  • [2].McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65:584–589. doi: 10.1097/00000542-198612000-00004. [DOI] [PubMed] [Google Scholar]
  • [3].Vaughan DJ, Thornton C, Wright DR, Fernandes JR, Robbins P, Dore C, et al. Effects of different concentrations of sevoflurane and desflurane on subcortical somatosensory evoked responses in anaesthetized, non-stimulated patients. Br J Anaesth. 2001;86:59–62. doi: 10.1093/bja/86.1.59. [DOI] [PubMed] [Google Scholar]
  • [4].Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370–386. doi: 10.1038/nrn2372. [DOI] [PubMed] [Google Scholar]
  • [5].Schwender D, Klasing S, Madler C, Poppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71:629–632. doi: 10.1093/bja/71.5.629. [DOI] [PubMed] [Google Scholar]
  • [6].Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990;72:33–39. doi: 10.1097/00000542-199001000-00007. [DOI] [PubMed] [Google Scholar]
  • [7].Mashour GA. Top-down mechanisms of anesthetic-induced unconsciousness. Front Syst Neurosci. 2014;8:115. doi: 10.3389/fnsys.2014.00115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2:291–302. doi: 10.1089/brain.2012.0107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:2681–2686. doi: 10.1073/pnas.0913008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front Neurosci. 2014;8:1–22. doi: 10.3389/fnsys.2014.00191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876–880. doi: 10.1126/science.1149213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Mitzdorf U, Singer W. Brain Prominent excitatory pathways in the cat visual cortex ( A 17 and A 18 ): A current source density analysis of electrically evoked potentials. Exp Brain Res. 1978;33:371–394. doi: 10.1007/BF00235560. [DOI] [PubMed] [Google Scholar]
  • [13].Abbes S, Louvel J, Lamarche M, Pumain R. Laminar analysis of the origin of the various components of evoked potentials in slices of rat sensorimotor cortex. Electroencephalogr Clin Neurophysiol. 1991;80:310–320. doi: 10.1016/0168-5597(91)90115-E. [DOI] [PubMed] [Google Scholar]
  • [14].Bode-Greuel KM, Singer W, Aldenhoff JB. A current source density analysis of field potentials evoked in slices of visual cortex. Exp Brain Res. 1987;69:213–219. doi: 10.1007/BF00247044. [DOI] [PubMed] [Google Scholar]
  • [15].Aizenman CD, Kirkwood A, Bear MF. A current source density analysis of evoked responses in slices of adult rat visual cortex: implications for the regulation of long-term potentiation. Cereb Cortex. 1996;6:751–758. doi: 10.1093/cercor/6.6.751. [DOI] [PubMed] [Google Scholar]
  • [16].Franks NP, Lieb WR. Selective actions of volatile general anaesthetics at molecular and cellular levels. Br J Anaesth. 1993;71:65–76. doi: 10.1093/bja/71.1.65. [DOI] [PubMed] [Google Scholar]
  • [17].Lukatch HS, Kiddoo C M, Iver MB. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex. 2005;15:1322–1331. doi: 10.1093/cercor/bhi015. [DOI] [PubMed] [Google Scholar]
  • [18].White PF, Johnston RR, Eger E 2nd. Determination of anesthetic requirement in rats. Anesthesiology. 1974;40:52–57. doi: 10.1097/00000542-197401000-00012. [DOI] [PubMed] [Google Scholar]
  • [19].Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67:435–441. doi: 10.1213/00000539-198805000-00003. [DOI] [PubMed] [Google Scholar]
  • [20].Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide.ai][erratum appears in Anesthesiology 1990 Jun;72(6):1104] Anesthesiology. 1990;72:33–39. doi: 10.1097/00000542-199001000-00007. [DOI] [PubMed] [Google Scholar]
  • [21].Liu EHC, Wong HK, Chia CP, Lim HJ, Chen ZY, Lee TL. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth. 2005;94:193–197. doi: 10.1093/bja/aei003. [DOI] [PubMed] [Google Scholar]
  • [22].Benkwitz C, Liao M, Laster MJ, Sonner JM, Eger I E, Pearce RA. Determination of the EC50 amnesic concentration of etomidate and its diffusion profile in brain tissue. Anesthesiol. 2007;106:114–123. doi: 10.1097/00000542-200701000-00020. [DOI] [PubMed] [Google Scholar]
  • [23].de Paepe P, van Hoey G, Belpaire FM, Rosseel MT, Boon PA, Buylaert WA. Relationship between etomidate plasma concentration and EEG effect in the rat. Pharm Res. 1999;16:924–929. doi: 10.1023/A:1018894523734. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES