Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2015 Nov 9;31(6):663–675. doi: 10.1007/s12264-015-1565-1

Functional neuroimaging of extraversion-introversion

Xu Lei 1,2,, Tianliang Yang 1,2, Taoyu Wu 1,2
PMCID: PMC5563732  PMID: 26552800

Abstract

Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

Keywords: extraversion, neuroimaging, resting-state fMRI, default mode network, scale-free dynamics

References

  • [1].Eysenck HJ, Eysenck SBG. Educational Industrial Testing Service. 1994. Manual for the Eysenck Personality Questionnaire:(EPQ-R Adult) [Google Scholar]
  • [2].Yamasue H, Abe O, Suga M, Yamada H, Inoue H, Tochigi M, et al. Gender-common and -specific neuroanatomical basis of human anxiety-related personality traits. Cereb Cortex. 2008;18:46–52. doi: 10.1093/cercor/bhm030. [DOI] [PubMed] [Google Scholar]
  • [3].McAdams DP, Pals JL. A new big five. Am Psychol. 2006;61:204–217. doi: 10.1037/0003-066X.61.3.204. [DOI] [PubMed] [Google Scholar]
  • [4].DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR. Testing predictions from personality neuroscience. Psychol Sci. 2010;21:820. doi: 10.1177/0956797610370159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Adelstein JS, Shehzad Z, Mennes M D, Young CG, Zuo XN, Kelly C, et al. Personality is reflected in the brain’s intrinsic functional architecture. PLoS One. 2011;6:27633. doi: 10.1371/journal.pone.0027633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Zuo N, Cheng J, Jiang T. Diffusion magnetic resonance imaging for Brainnetome: a critical review. Neurosci Bull. 2012;28:375–388. doi: 10.1007/s12264-012-1245-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Song M, Jiang T. A review of functional magnetic resonance imaging for Brainnetome. Neurosci Bull. 2012;28:389–398. doi: 10.1007/s12264-012-1244-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Eisenberger NI, Lieberman MD, Satpute AB. Personality from a controlled processing perspective: an fMRI study of neuroticism, extraversion, and self-consciousness. Cogn Affect Behav Neurosci. 2005;5:169–181. doi: 10.3758/CABN.5.2.169. [DOI] [PubMed] [Google Scholar]
  • [9].Kumari V f D, Williams SC, Gray JA. Personality predicts brain responses to cognitive demands. J Neurosci. 2004;24:10636–10641. doi: 10.1523/JNEUROSCI.3206-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Suslow T, Kugel H, Reber H, Bauer J, Dannlowski U, Kersting A, et al. Automatic brain response to facial emotion as a function of implicitly and explicitly measured extraversion. Neuroscience. 2010;167:111–123. doi: 10.1016/j.neuroscience.2010.01.038. [DOI] [PubMed] [Google Scholar]
  • [11].Wei L, Duan X, Yang Y, Liao W, Gao Q, Ding JR, et al. The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res. 2011;1419:68–75. doi: 10.1016/j.brainres.2011.08.060. [DOI] [PubMed] [Google Scholar]
  • [12].Lei X, Zhao Z, Chen H. Extraversion is encoded by scalefree dynamics of default mode network. Neuroimage. 2013;74:52–57. doi: 10.1016/j.neuroimage.2013.02.020. [DOI] [PubMed] [Google Scholar]
  • [13].Sampaio A, Soares JM, Coutinho J, Sousa N, Goncalves OF. The Big Five default brain: functional evidence. Brain Struct Funct. 2014;219:1913–1922. doi: 10.1007/s00429-013-0610-y. [DOI] [PubMed] [Google Scholar]
  • [14].Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106:13040–13045. doi: 10.1073/pnas.0905267106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. Scale-free and multifractal time dynamics of fMRI Signals during rest and task. Front Physiol. 2012;3:186. doi: 10.3389/fphys.2012.00186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66:353–369. doi: 10.1016/j.neuron.2010.04.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].He BJ. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci. 2011;31:13786–13795. doi: 10.1523/JNEUROSCI.2111-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Haas BW, Omura K, Amin Z, Constable RT, Canli T. Functional connectivity with the anterior cingulate is associated with extraversion during the emotional Stroop task. Soc Neurosci. 2006;1:16–24. doi: 10.1080/17470910600650753. [DOI] [PubMed] [Google Scholar]
  • [19].Schaefer M, Knuth M, Rumpel F. Striatal response to favorite brands as a function of neuroticism and extraversion. Brain Res. 2011;1425:83–89. doi: 10.1016/j.brainres.2011.09.055. [DOI] [PubMed] [Google Scholar]
  • [20].Fruhholz S, Prinz M, Herrmann M. Affect-related personality traits and contextual interference processing during perception of facial affect. Neurosci Lett. 2010;469:260–264. doi: 10.1016/j.neulet.2009.12.010. [DOI] [PubMed] [Google Scholar]
  • [21].Farde L, Gustavsson JP, Jonsson E. D2 dopamine rece ptors and personality traits. Nature. 1997;385:590. doi: 10.1038/385590a0. [DOI] [PubMed] [Google Scholar]
  • [22].Martin SB, Covell DJ, Joseph JE, Chebrolu H, Smith CD, Kelly TH, et al. Human experience seeking correlates with hippocampus volume: convergent evidence from manual tracing and voxel-based morphometry. Neuropsychologia. 2007;45:2874–2881. doi: 10.1016/j.neuropsychologia.2007.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Chavanon M-L, Wacker J, Leue A, Stemmler G. Evidence for a dopaminergic link between working memory and agentic extraversion: An analysis of load-related changes in EEG alpha 1 activity. Biol Psychol. 2007;74:46–59. doi: 10.1016/j.biopsycho.2006.07.001. [DOI] [PubMed] [Google Scholar]
  • [24].Chi SE, Park CB, Lim SL, Park EH, Lee YH, Lee KH, et al. EEG and personality dimensions: A consideration based on the brain oscillatory systems. Pers Individ Dif. 2005;39:669–681. doi: 10.1016/j.paid.2005.02.017. [DOI] [Google Scholar]
  • [25].Matthews G, Amelang M. Extraversion, arousal theory and performance: A study of individual differences in the eeg. Pers Individ Dif. 1993;14:347–363. doi: 10.1016/0191-8869(93)90133-N. [DOI] [Google Scholar]
  • [26].O’Gorman RL, Kumari V, Williams SC, Zelaya FO, Connor SE, Alsop DC, et al. Personality factors correlate with regional cerebral perfusion. Neuroimage. 2006;31:489–495. doi: 10.1016/j.neuroimage.2005.12.048. [DOI] [PubMed] [Google Scholar]
  • [27].Gale A, Coles M, Blaydon J. Extraversion-introversion and the EEG. Br J Psychol. 1969;60:209–223. doi: 10.1111/j.2044-8295.1969.tb01194.x. [DOI] [PubMed] [Google Scholar]
  • [28].Schmidtke JI, Heller W. Personality, affect and EEG: predicting patterns of regional brain activity related to extraversion and neuroticism. Pers Individ Dif. 2004;36:717–732. doi: 10.1016/S0191-8869(03)00129-6. [DOI] [Google Scholar]
  • [29].Alessandri G, Caprara G D, Pascalis V. Relations among EEG-alpha asymmetry and positivity personality trait. Brain Cogn. 2015;97:10–21. doi: 10.1016/j.bandc.2015.04.003. [DOI] [PubMed] [Google Scholar]
  • [30].Chavanon ML, Wacker J, Stemmler G. Rostral anterior cingulate activity generates posterior versus anterior theta activity linked to agentic extraversion. Cogn Affect Behav Neurosci. 2011;11:172–185. doi: 10.3758/s13415-010-0019-5. [DOI] [PubMed] [Google Scholar]
  • [31].Ditraglia GM, Polich J. P300 and introverted/extraverted personality types. Psychophysiology. 1991;28:177–184. doi: 10.1111/j.1469-8986.1991.tb00410.x. [DOI] [PubMed] [Google Scholar]
  • [32].Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409. [DOI] [PubMed] [Google Scholar]
  • [33].Raichle ME. The brain’s dark energy. Sci Am. 2010;302:44–49. doi: 10.1038/scientificamerican0310-44. [DOI] [PubMed] [Google Scholar]
  • [34].Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253–258. doi: 10.1073/pnas.0135058100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Lei X, Wang Y, Yuan H, Mantini D. Neuronal oscillations and functional interactions between resting state networks. Hum Brain Mapp. 2014;35:3517–3528. doi: 10.1002/hbm.22418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Gao Q, Xu Q, Duan X, Liao W, Ding J, Zhang Z, et al. Extraversion and neuroticism relate to topological properties of resting-state brain networks. Front Hum Neurosci. 2013;7:257. doi: 10.3389/fnhum.2013.00257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Raichle M M, Leod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–682. doi: 10.1073/pnas.98.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Deckersbach T, Miller KK, Klibanski A, Fischman A, Dougherty DD, Blais MA, et al. Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depress Anxiety. 2006;23:133–138. doi: 10.1002/da.20152. [DOI] [PubMed] [Google Scholar]
  • [39].Johnson DL, Wiebe JS, Gold SM, Andreasen NC, Hichwa RD, Watkins GL, et al. Cerebral blood flow and personality: a positron emission tomography study. Am J Psychiatry. 1999;156:252–257. doi: 10.1176/ajp.156.2.252. [DOI] [PubMed] [Google Scholar]
  • [40].Kim SH, Hwang JH, Park HS, Kim SE. Resting brain metabolic correlates of neuroticism and extraversion in young men. Neuroreport. 2008;19:883–886. doi: 10.1097/WNR.0b013e328300080f. [DOI] [PubMed] [Google Scholar]
  • [41].Volkow ND, Tomasi D, Wang G-J, Fowler JS, Telang F, Goldstein RZ, et al. Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Mol Psychiatry. 2011;16:818–825. doi: 10.1038/mp.2011.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Kunisato Y, Okamoto Y, Okada G, Aoyama S, Nishiyama Y, Onoda K, et al. Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state. Neurosci Lett. 2011;492:109–113. doi: 10.1016/j.neulet.2011.01.067. [DOI] [PubMed] [Google Scholar]
  • [43].Costa PT, McCrae RR. Neo PI-R professional manual. Odessa, FL: Psychological Assessment Resources; 1992. [Google Scholar]
  • [44].Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage. 2010;49:1432–1445. doi: 10.1016/j.neuroimage.2009.09.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Wei L, Duan X, Zheng C, Wang S, Gao Q, Zhang Z, et al. Specific frequency bands of amplitude low-frequency oscillation encodes personality. Hum Brain Mapp. 2014;35:331–339. doi: 10.1002/hbm.22176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994;2:56–78. doi: 10.1002/hbm.460020107. [DOI] [Google Scholar]
  • [47].Sporns O. Neuroimage. 2013. The human connectome: origins and challenges. [DOI] [PubMed] [Google Scholar]
  • [48].Bickart KC, Hollenbeck MC, Barrett LF, Dickerson BC. Intrinsic amygdala-cortical functional connectivity predicts social network size in humans. J Neurosci. 2012;32:14729–14741. doi: 10.1523/JNEUROSCI.1599-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Liu H, Li H, Wang Y, Lei X. Enhanced brain small-worldness after sleep deprivation: a compensatory effect. J Sleep Res. 2014;23:554–563. doi: 10.1111/jsr.12147. [DOI] [PubMed] [Google Scholar]
  • [50].Lei X, Wang Y, Yuan H, Chen A. Brain scale-free properties in awake rest and NREM sleep: A simultaneous EEG/fMRI study. Brain Topogr. 2015;28:292–304. doi: 10.1007/s10548-014-0399-x. [DOI] [PubMed] [Google Scholar]
  • [51].Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, et al. Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage. 2005;25:141–158. doi: 10.1016/j.neuroimage.2004.10.044. [DOI] [PubMed] [Google Scholar]
  • [52].Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, et al. A shift to randomness of brain oscillations in people with autism. Biol Psychiatry. 2010;68:1092–1099. doi: 10.1016/j.biopsych.2010.06.027. [DOI] [PubMed] [Google Scholar]
  • [53].Hahn T, Dresler T, Ehlis AC, Pyka M, Dieler AC, Saathoff C, et al. Randomness of resting-state brain oscillations encodes Gray’s personality trait. Neuroimage. 2012;59:1842–1845. doi: 10.1016/j.neuroimage.2011.08.042. [DOI] [PubMed] [Google Scholar]
  • [54].Qian M, Wu G, Zhu R, Zhang S. Development of the Revised Eysenck Personality Questionnaire Short Scale for Chinese (EPQ-RSC)(Article written in chinese) Acta Psychol Sin. 2000;32:317–323. [Google Scholar]
  • [55].Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140–151. doi: 10.1002/hbm.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Zilber N, Ciuciu P, Abry P v, Wassenhove V. 2012 9th Ieee International Symposium on Biomedical Imaging (Isbi) 2012. Modulation of Scale-Free Properties of Brain Activity in Meg; pp. 1531–1534. [Google Scholar]
  • [57].Xin F, Lei X. Competition between frontoparietal control and default networks supports social working memory and empathy. Social Cogn Affect Neurosci. 2015;10:1144–1152. doi: 10.1093/scan/nsu160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mindreading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci. 2006;10:424–430. doi: 10.1016/j.tics.2006.07.005. [DOI] [PubMed] [Google Scholar]
  • [59].Hassabis D, Spreng RN, Rusu AA, Robbins CA, Mar RA, Schacter DL. Imagine all the people: how the brain creates and uses personality models to predict behavior. Cereb Cortex. 2014;24:1979–1987. doi: 10.1093/cercor/bht042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Lei X, Qiu C, Xu P, Yao D. A parallel framework for simultaneous EEG/fMRI analysis: Methodology and simulation. Neuroimage. 2010;52:1123–1134. doi: 10.1016/j.neuroimage.2010.01.024. [DOI] [PubMed] [Google Scholar]
  • [61].Sheng T, Gheytanchi A, Aziz-Zadeh L. Default network deactivations are correlated with psychopathic personality traits. PLoS One. 2010;5:12611. doi: 10.1371/journal.pone.0012611. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES