Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x

A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene.

W D Rapp 1, D B Stern 1
PMCID: PMC556547  PMID: 1372246

Abstract

To determine the structure of a functional plant mitochondrial promoter, we have partially purified an RNA polymerase activity that correctly initiates transcription at the maize mitochondrial atp1 promoter in vitro. Using a series of 5' deletion constructs, we found that essential sequences are located within--19 nucleotides (nt) of the transcription initiation site. The region surrounding the initiation site includes conserved sequence motifs previously proposed to be maize mitochondrial promoter elements. Deletion of a conserved 11 nt sequence showed that it is critical for promoter function, but deletion or alteration of conserved upstream G(A/T)3-4 repeats had no effect. When the atp1 11 nt sequence was inserted into different plasmids lacking mitochondrial promoter activity, transcription was only observed for one of these constructs. We infer from these data that the functional promoter extends beyond this motif, most likely in the 5' direction. The maize mitochondrial cox3 and atp6 promoters also direct transcription initiation in this in vitro system, suggesting that it may be widely applicable for studies of mitochondrial transcription in this species.

Full text

PDF
1065

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogenhagen D. F., Romanelli M. F. Template sequences required for transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters. Mol Cell Biol. 1988 Jul;8(7):2917–2924. doi: 10.1128/mcb.8.7.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Christianson T., Rabinowitz M. Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J Biol Chem. 1983 Nov 25;258(22):14025–14033. [PubMed] [Google Scholar]
  4. Clayton D. A. Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem Sci. 1991 Mar;16(3):107–111. doi: 10.1016/0968-0004(91)90043-u. [DOI] [PubMed] [Google Scholar]
  5. Coruzzi G., Broglie R., Cashmore A., Chua N. H. Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b-binding thylakoid polypeptide. J Biol Chem. 1983 Feb 10;258(3):1399–1402. [PubMed] [Google Scholar]
  6. Costanzo M. C., Fox T. D. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet. 1990;24:91–113. doi: 10.1146/annurev.ge.24.120190.000515. [DOI] [PubMed] [Google Scholar]
  7. Covello P. S., Gray M. W. Sequence analysis of wheat mitochondrial transcripts capped in vitro: definitive identification of transcription initiation sites. Curr Genet. 1991 Aug;20(3):245–251. doi: 10.1007/BF00326239. [DOI] [PubMed] [Google Scholar]
  8. Elliott D. J., Jacobs H. T. Mutually exclusive synthetic pathways for sea urchin mitochondrial rRNA and mRNA. Mol Cell Biol. 1989 Mar;9(3):1069–1082. doi: 10.1128/mcb.9.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finnegan P. M., Brown G. G. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990 Jan;2(1):71–83. doi: 10.1105/tpc.2.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenberg B. M., Narita J. O., DeLuca-Flaherty C., Gruissem W., Rushlow K. A., Hallick R. B. Evidence for two RNA polymerase activities in Euglena gracilis chloroplasts. J Biol Chem. 1984 Dec 10;259(23):14880–14887. [PubMed] [Google Scholar]
  11. Hanic-Joyce P. J., Gray M. W. Accurate transcription of a plant mitochondrial gene in vitro. Mol Cell Biol. 1991 Apr;11(4):2035–2039. doi: 10.1128/mcb.11.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  13. Kennell J. C., Lambowitz A. M. Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol. 1989 Sep;9(9):3603–3613. doi: 10.1128/mcb.9.9.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levings C. S., 3rd, Brown G. G. Molecular biology of plant mitochondria. Cell. 1989 Jan 27;56(2):171–179. doi: 10.1016/0092-8674(89)90890-8. [DOI] [PubMed] [Google Scholar]
  15. Michelotti E. F., Hajduk S. L. Developmental regulation of trypanosome mitochondrial gene expression. J Biol Chem. 1987 Jan 15;262(2):927–932. [PubMed] [Google Scholar]
  16. Mulligan R. M., Lau G. T., Walbot V. Numerous transcription initiation sites exist for the maize mitochondrial genes for subunit 9 of the ATP synthase and subunit 3 of cytochrome oxidase. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7998–8002. doi: 10.1073/pnas.85.21.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mulligan R. M., Maloney A. P., Walbot V. RNA processing and multiple transcription initiation sites result in transcript size heterogeneity in maize mitochondria. Mol Gen Genet. 1988 Mar;211(3):373–380. doi: 10.1007/BF00425688. [DOI] [PubMed] [Google Scholar]
  19. Orozco E. M., Jr, Mullet J. E., Chua N. H. An in vitro system for accurate transcription initiation of chloroplast protein genes. Nucleic Acids Res. 1985 Feb 25;13(4):1283–1302. doi: 10.1093/nar/13.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osinga K. A., Tabak H. F. Initiation of transcription of genes for mitochondrial ribosomal RNA in yeast: comparison of the nucleotide sequence around the 5'-ends of both genes reveals a homologous stretch of 17 nucleotides. Nucleic Acids Res. 1982 Jun 25;10(12):3617–3626. doi: 10.1093/nar/10.12.3617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pollard V. W., Rohrer S. P., Michelotti E. F., Hancock K., Hajduk S. L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990 Nov 16;63(4):783–790. doi: 10.1016/0092-8674(90)90144-4. [DOI] [PubMed] [Google Scholar]
  22. Sawadogo M., Roeder R. G. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4394–4398. doi: 10.1073/pnas.82.13.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schinkel A. H., Tabak H. F. Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet. 1989 May;5(5):149–154. doi: 10.1016/0168-9525(89)90056-5. [DOI] [PubMed] [Google Scholar]
  24. Stern D. B., Newton K. J. Mitochondrial gene expression in Cucurbitaceae: conserved and variable features. Curr Genet. 1985;9(5):395–404. doi: 10.1007/BF00421611. [DOI] [PubMed] [Google Scholar]
  25. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  26. Weil P. A., Luse D. S., Segall J., Roeder R. G. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell. 1979 Oct;18(2):469–484. doi: 10.1016/0092-8674(79)90065-5. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES