Abstract
Structure-function relationships of cholinesterases (CHEs) were studied by expressing site-directed and naturally occurring mutants of human butyrylcholinesterase (BCHE) in microinjected Xenopus oocytes. Site-directed mutagenesis of the conserved electronegative Glu441,Ile442,Glu443 domain to Gly441,Ile442,Gln443 drastically reduced the rate of butyrylthiocholine (BTCh) hydrolysis and caused pronounced resistance to dibucaine binding. These findings implicate the charged Glu441,Ile442,Glu443 domain as necessary for a functional CHE catalytic triad as well as for binding quinoline derivatives. Asp70 to Gly substitution characteristic of 'atypical' BCHE, failed to alter its Km towards BTCh or dibucaine binding but reduced hydrolytic activity to 25% of control. Normal hydrolytic activity was restored to Gly70 BCHE by additional His114 or Tyr561 mutations, both of which co-appear with Gly70 in natural BCHE variants, which implies a likely selection advantage for these double BCHE mutants over the single Gly70 BCHE variant. Gly70 BCHE variants also displayed lower binding as compared with Asp70 BCHE to cholinergic drugs, certain choline esters and solanidine. These effects were ameliorated in part by additional mutations or in binding solanidine complexed with sugar residues. These observations indicate that structural interactions exist between N' and C' terminal domains in CHEs which contribute to substrate and inhibitor binding and suggest a crucial involvement of both electrostatic and hydrophobic domains in the build-up of the CHE active center.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben Aziz R., Soreq H. Improving poor in vitro transcription from G,C-rich genes. Nucleic Acids Res. 1990 Jun 11;18(11):3418–3418. doi: 10.1093/nar/18.11.3418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman H. A., Olshefski D. F., Gilbert M., Decker M. M. Fluorescent phosphonate labels for serine hydrolases. Kinetic and spectroscopic properties of (7-nitrobenz-2-oxa-1,3-diazole)aminoalkyl methylphosphonofluoridates and their conjugates with acetylcholinesterase molecular forms. J Biol Chem. 1985 Mar 25;260(6):3462–3468. [PubMed] [Google Scholar]
- Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Arai K., Madison J., Laurell C. B., Galliano M., Watkins S., Peach R., Myles T., George P., Putnam F. W. Hypermutability of CpG dinucleotides in the propeptide-encoding sequence of the human albumin gene. Proc Natl Acad Sci U S A. 1990 May;87(10):3909–3913. doi: 10.1073/pnas.87.10.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. G., Lieberman D. L., Hasan F. B., Cohen J. B. 1-Bromopinacolone, an active site-directed covalent inhibitor for acetylcholinesterase. J Biol Chem. 1982 Dec 10;257(23):14087–14092. [PubMed] [Google Scholar]
- Gibney G., Camp S., Dionne M., MacPhee-Quigley K., Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7546–7550. doi: 10.1073/pnas.87.19.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gnatt A., Prody C. A., Zamir R., Lieman-Hurwitz J., Zakut H., Soreq H. Expression of alternatively terminated unusual human butyrylcholinesterase messenger RNA transcripts, mapping to chromosome 3q26-ter, in nervous system tumors. Cancer Res. 1990 Apr 1;50(7):1983–1987. [PubMed] [Google Scholar]
- HARRIS H., WHITTAKER M. Differential inhibition of the serum cholinesterase phenotypes by solanine and solanidine. Ann Hum Genet. 1962 Jul;26:73–76. doi: 10.1111/j.1469-1809.1962.tb01311.x. [DOI] [PubMed] [Google Scholar]
- HODGKIN W., GIBLETT E. R., LEVINE H., BAUER W., MOTULSKY A. G. COMPLETE PSEUDOCHOLINESTERASE DEFICIENCY: GENETIC AND IMMUNOLOGIC CHARACTERIZATION. J Clin Invest. 1965 Mar;44:486–493. doi: 10.1172/JCI105162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasan F. B., Cohen S. G., Cohen J. B. Hydrolysis by acetylcholinesterase. Apparent molal volumes and trimethyl and methyl subsites. J Biol Chem. 1980 May 10;255(9):3898–3904. [PubMed] [Google Scholar]
- Hasan F. B., Elkind J. L., Cohen S. G., Cohen J. B. Cationic and uncharged substrates and reversible inhibitors in hydrolysis by acetylcholinesterase (EC 3.1.1.7). The trimethyl subsite. J Biol Chem. 1981 Aug 10;256(15):7781–7785. [PubMed] [Google Scholar]
- Kragh-Hansen U., Brennan S. O., Galliano M., Sugita O. Binding of warfarin, salicylate, and diazepam to genetic variants of human serum albumin with known mutations. Mol Pharmacol. 1990 Feb;37(2):238–242. [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- La Du B. N., Bartels C. F., Nogueira C. P., Arpagaus M., Lockridge O. Proposed nomenclature for human butyrylcholinesterase genetic variants identified by DNA sequencing. Cell Mol Neurobiol. 1991 Feb;11(1):79–89. doi: 10.1007/BF00712801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lapidot-Lifson Y., Prody C. A., Ginzberg D., Meytes D., Zakut H., Soreq H. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4715–4719. doi: 10.1073/pnas.86.12.4715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layer P. G., Sporns O. Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye. Proc Natl Acad Sci U S A. 1987 Jan;84(1):284–288. doi: 10.1073/pnas.84.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockridge O., Adkins S., La Du B. N. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem. 1987 Sep 25;262(27):12945–12952. [PubMed] [Google Scholar]
- MacPhee-Quigley K., Vedvick T. S., Taylor P., Taylor S. S. Profile of the disulfide bonds in acetylcholinesterase. J Biol Chem. 1986 Oct 15;261(29):13565–13570. [PubMed] [Google Scholar]
- Majumdar R., Balasubramanian A. S. Chemical modification of acetylcholinesterase from eel and basal ganglia: effect on the acetylcholinesterase and aryl acylamidase activities. Biochemistry. 1984 Aug 28;23(18):4088–4093. doi: 10.1021/bi00313a012. [DOI] [PubMed] [Google Scholar]
- Naveh M., Bernstein Z., Segal D., Shalitin Y. New substrates of acetylcholinesterase. FEBS Lett. 1981 Nov 2;134(1):53–56. doi: 10.1016/0014-5793(81)80549-2. [DOI] [PubMed] [Google Scholar]
- Neville L. F., Gnatt A., Loewenstein Y., Soreq H. Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase. J Neurosci Res. 1990 Dec;27(4):452–460. doi: 10.1002/jnr.490270404. [DOI] [PubMed] [Google Scholar]
- Neville L. F., Gnatt A., Padan R., Seidman S., Soreq H. Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations. J Biol Chem. 1990 Dec 5;265(34):20735–20738. [PubMed] [Google Scholar]
- Nolte H. J., Rosenberry T. L., Neumann E. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry. 1980 Aug 5;19(16):3705–3711. doi: 10.1021/bi00557a011. [DOI] [PubMed] [Google Scholar]
- Page J. D., Wilson I. B. Acetylcholinesterase: inhibition by tetranitromethane and arsenite. Binding of arsenite by tyrosine residues. J Biol Chem. 1985 Feb 10;260(3):1475–1478. [PubMed] [Google Scholar]
- Patinkin D., Seidman S., Eckstein F., Benseler F., Zakut H., Soreq H. Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro. Mol Cell Biol. 1990 Nov;10(11):6046–6050. doi: 10.1128/mcb.10.11.6046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piela L., Némethy G., Scheraga H. A. Proline-induced constraints in alpha-helices. Biopolymers. 1987 Sep;26(9):1587–1600. doi: 10.1002/bip.360260910. [DOI] [PubMed] [Google Scholar]
- Prody C. A., Zevin-Sonkin D., Gnatt A., Goldberg O., Soreq H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3555–3559. doi: 10.1073/pnas.84.11.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell A. J., Fersht A. R. Rational modification of enzyme catalysis by engineering surface charge. Nature. 1987 Aug 6;328(6130):496–500. doi: 10.1038/328496a0. [DOI] [PubMed] [Google Scholar]
- Russell A. J., Thomas P. G., Fersht A. R. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. J Mol Biol. 1987 Feb 20;193(4):803–813. doi: 10.1016/0022-2836(87)90360-3. [DOI] [PubMed] [Google Scholar]
- Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
- Shinitzky Meir, Dudai Yadin, Silman Israel. Spectral evidence for the presence of tryptophan in the binding site of acetylcholinesterase. FEBS Lett. 1973 Feb 15;30(1):125–128. doi: 10.1016/0014-5793(73)80633-7. [DOI] [PubMed] [Google Scholar]
- Soreq H., Seidman S., Dreyfus P. A., Zevin-Sonkin D., Zakut H. Expression and tissue-specific assembly of human butyrylcholine esterase in microinjected Xenopus laevis oocytes. J Biol Chem. 1989 Jun 25;264(18):10608–10613. [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Valentino R. J., Lockridge O., Eckerson H. W., La Du B. N. Prediction of drug sensitivity in individuals with atypical serum cholinesterase based on in vitro biochemical studies. Biochem Pharmacol. 1981 Jun 15;30(12):1643–1649. doi: 10.1016/0006-2952(81)90392-0. [DOI] [PubMed] [Google Scholar]
- Weise C., Kreienkamp H. J., Raba R., Pedak A., Aaviksaar A., Hucho F. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium. EMBO J. 1990 Dec;9(12):3885–3888. doi: 10.1002/j.1460-2075.1990.tb07607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
- Zakut H., Ehrlich G., Ayalon A., Prody C. A., Malinger G., Seidman S., Ginzberg D., Kehlenbach R., Soreq H. Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. J Clin Invest. 1990 Sep;86(3):900–908. doi: 10.1172/JCI114791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakut H., Lieman-Hurwitz J., Zamir R., Sindell L., Ginzberg D., Soreq H. Chorionic villus cDNA library displays expression of butyrylcholinesterase: putative genetic disposition for ecological danger. Prenat Diagn. 1991 Aug;11(8):597–607. doi: 10.1002/pd.1970110817. [DOI] [PubMed] [Google Scholar]
- Zakut H., Matzkel A., Schejter E., Avni A., Soreq H. Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain. J Neurochem. 1985 Aug;45(2):382–389. doi: 10.1111/j.1471-4159.1985.tb03999.x. [DOI] [PubMed] [Google Scholar]
- Zhang X. J., Baase W. A., Matthews B. W. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme. Biochemistry. 1991 Feb 26;30(8):2012–2017. doi: 10.1021/bi00222a001. [DOI] [PubMed] [Google Scholar]