Abstract
The present work examines the fate of nucleosomes after in vitro transcription of a 1400 bp DNA template containing the mouse alpha-globin sequences and the promoter of T7 RNA polymerase. Naked and nucleosome-bearing templates (containing about four or seven histone H1-lacking particles per template) have been studied by sedimentation, gel electrophoresis, digestion with restriction nucleases and electron microscopy. Both naked and nucleosome-organized templates could be transcribed in vitro by the T7 polymerase. With all types of templates, both full length and shorter transcripts were obtained. The incomplete transcripts were represented by many distinct bands, pointing to the presence of multiple stops in the process of elongation. The electrophoretic pattern of the transcripts was identical in naked and in nucleosome-containing templates, showing that the stops depended on some particular DNA sequences and not on the presence of nucleosomes. The efficiency of transcription in the presence of nucleosomes was decreased owing to three different factors: (i) blocked initiation in a fraction of the templates which had their promoters occupied by a nucleosome; (ii) a decreased rate of elongation and (iii) a lag period of initiation. Sedimentation velocity, electrophoretic mobility and protection of four different restriction sites of the templates demonstrated that T7 polymerase transcribed through nucleosomes without their displacement.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ausio J., Seger D., Eisenberg H. Nucleosome core particle stability and conformational change. Effect of temperature, particle and NaCl concentrations, and crosslinking of histone H3 sulfhydryl groups. J Mol Biol. 1984 Jun 15;176(1):77–104. doi: 10.1016/0022-2836(84)90383-8. [DOI] [PubMed] [Google Scholar]
- Bina M., Sturtevant J. M., Stein A. Stability of DNA in nucleosomes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4044–4047. doi: 10.1073/pnas.77.7.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. J., Felsenfeld G. Formation of nucleosomes on positively supercoiled DNA. EMBO J. 1991 Feb;10(2):387–395. doi: 10.1002/j.1460-2075.1991.tb07960.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corthésy B., Léonnard P., Wahli W. Transcriptional potentiation of the vitellogenin B1 promoter by a combination of both nucleosome assembly and transcription factors: an in vitro dissection. Mol Cell Biol. 1990 Aug;10(8):3926–3933. doi: 10.1128/mcb.10.8.3926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Draper K. G., Riggsby W. S. Comparison of in vitro chromatin transcription using E. coli RNA polymerase and wheat germ RNA polymerase B. Biochim Biophys Acta. 1981 Dec 28;656(2):213–219. doi: 10.1016/0005-2787(81)90089-7. [DOI] [PubMed] [Google Scholar]
- Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
- Felts S. J., Weil P. A., Chalkley R. Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol. 1990 May;10(5):2390–2401. doi: 10.1128/mcb.10.5.2390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland L. J., McCarthy B. J. Modulation of transcription from chromatin assembled in vitro. Biochemistry. 1980 Jun 24;19(13):2965–2976. doi: 10.1021/bi00554a023. [DOI] [PubMed] [Google Scholar]
- Izban M. G., Luse D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991 Apr;5(4):683–696. doi: 10.1101/gad.5.4.683. [DOI] [PubMed] [Google Scholar]
- Knezetic J. A., Luse D. S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell. 1986 Apr 11;45(1):95–104. doi: 10.1016/0092-8674(86)90541-6. [DOI] [PubMed] [Google Scholar]
- Labhart P., Koller T. Electron microscope specimen preparation of rat liver chromatin by a modified Miller spreading technique. Eur J Cell Biol. 1981 Jun;24(2):309–316. [PubMed] [Google Scholar]
- Levin J. R., Chamberlin M. J. Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7. J Mol Biol. 1987 Jul 5;196(1):61–84. doi: 10.1016/0022-2836(87)90511-0. [DOI] [PubMed] [Google Scholar]
- Lorch Y., LaPointe J. W., Kornberg R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell. 1987 Apr 24;49(2):203–210. doi: 10.1016/0092-8674(87)90561-7. [DOI] [PubMed] [Google Scholar]
- Lorch Y., LaPointe J. W., Kornberg R. D. On the displacement of histones from DNA by transcription. Cell. 1988 Dec 2;55(5):743–744. doi: 10.1016/0092-8674(88)90128-6. [DOI] [PubMed] [Google Scholar]
- Losa R., Brown D. D. A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it. Cell. 1987 Aug 28;50(5):801–808. doi: 10.1016/0092-8674(87)90338-2. [DOI] [PubMed] [Google Scholar]
- Morse R. H. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro. EMBO J. 1989 Aug;8(8):2343–2351. doi: 10.1002/j.1460-2075.1989.tb08362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noll H., Noll M. Sucrose gradient techniques and applications to nucleosome structure. Methods Enzymol. 1989;170:55–116. doi: 10.1016/0076-6879(89)70043-4. [DOI] [PubMed] [Google Scholar]
- Pederson D. S., Morse R. H. Effect of transcription of yeast chromatin on DNA topology in vivo. EMBO J. 1990 Jun;9(6):1873–1881. doi: 10.1002/j.1460-2075.1990.tb08313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaffle P., Gerlach V., Bunzel L., Jackson V. In vitro evidence that transcription-induced stress causes nucleosome dissolution and regeneration. J Biol Chem. 1990 Oct 5;265(28):16830–16840. [PubMed] [Google Scholar]
- Rhodes D. Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J. 1985 Dec 16;4(13A):3473–3482. doi: 10.1002/j.1460-2075.1985.tb04106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakuma K., Matsumura Y., Senshu T. Formation of transcribing mononucleosome-eukaryotic RNA polymerase II complexes in vitro as a simple model of active chromatin. Nucleic Acids Res. 1984 Feb 10;12(3):1415–1426. doi: 10.1093/nar/12.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shanahan M. M., Kmiec E. B. Assembly of transcriptionally inactive chromatin in vitro. J Biochem. 1989 Jul;106(1):29–33. doi: 10.1093/oxfordjournals.jbchem.a122813. [DOI] [PubMed] [Google Scholar]
- Theissen G., Pardon B., Wagner R. A quantitative assessment for transcriptional pausing of DNA-dependent RNA polymerases in vitro. Anal Biochem. 1990 Sep;189(2):254–261. doi: 10.1016/0003-2697(90)90117-r. [DOI] [PubMed] [Google Scholar]
- Thoma F., Koller T. Influence of histone H1 on chromatin structure. Cell. 1977 Sep;12(1):101–107. doi: 10.1016/0092-8674(77)90188-x. [DOI] [PubMed] [Google Scholar]
- Wasylyk B., Chambon P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur J Biochem. 1979 Aug 1;98(2):317–327. doi: 10.1111/j.1432-1033.1979.tb13191.x. [DOI] [PubMed] [Google Scholar]
- Wasylyk B., Thevenin G., Oudet P., Chambon P. Transcription of in vitro assembled chromatin by Escherichia coli RNA polymerase. J Mol Biol. 1979 Mar 5;128(3):411–440. doi: 10.1016/0022-2836(79)90095-0. [DOI] [PubMed] [Google Scholar]
- Williamson P., Felsenfeld G. Transcription of histone-covered T7 DNA by Escherichia coli RNA polymerase. Biochemistry. 1978 Dec 26;17(26):5695–5705. doi: 10.1021/bi00619a015. [DOI] [PubMed] [Google Scholar]
- Wolffe A. P., Drew H. R. Initiation of transcription on nucleosomal templates. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9817–9821. doi: 10.1073/pnas.86.24.9817. [DOI] [PMC free article] [PubMed] [Google Scholar]





