Abstract
The marmoset (Callithrix jacchus jacchus), a South American monkey, is polymorphic for the middle- to long-wave cone photopigments: the three variant pigments have spectral peaks at 543, 556 and 563 nm. Comparisons of the deduced amino acid sequences of these pigments indicate that the variations in spectral sensitivity are associated with the presence or absence of hydroxyl-bearing residues at sites 180 and 285; but, in contrast to the additive hypothesis of Neitz et al. (1991), we propose that adjustments at site 233 may also be required to produce viable long-wave and middle-wave pigments. Within a family group of monkeys, we find that a restriction site polymorphism in the photopigment gene segregates in a way that is consistent with the single X-linked gene hypothesis previously proposed on the basis of the photopigment types present in male and female marmosets.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Applebury M. L., Hargrave P. A. Molecular biology of the visual pigments. Vision Res. 1986;26(12):1881–1895. doi: 10.1016/0042-6989(86)90115-x. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K., Astell S., Hunt D. M., Mollon J. D. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991 Mar;156:1–19. doi: 10.1242/jeb.156.1.1. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K., Jacobs G. H., Spiegelhalter D. J., Mollon J. D. Two types of trichromatic squirrel monkey share a pigment in the red-green spectral region. Vision Res. 1985;25(12):1937–1946. doi: 10.1016/0042-6989(85)90018-5. [DOI] [PubMed] [Google Scholar]
- Clarke B. C. The evolution of genetic diversity. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):453–474. doi: 10.1098/rspb.1979.0079. [DOI] [PubMed] [Google Scholar]
- Dartnall H. J., Bowmaker J. K., Mollon J. D. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B Biol Sci. 1983 Nov 22;220(1218):115–130. doi: 10.1098/rspb.1983.0091. [DOI] [PubMed] [Google Scholar]
- Feil R., Aubourg P., Heilig R., Mandel J. L. A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics. 1990 Feb;6(2):367–373. doi: 10.1016/0888-7543(90)90578-i. [DOI] [PubMed] [Google Scholar]
- Ibbotson R. E., Hunt D. M., Bowmaker J. K., Mollon J. D. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc Biol Sci. 1992 Feb 22;247(1319):145–154. doi: 10.1098/rspb.1992.0021. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J. Color vision in squirrel monkeys: sex-related differences suggest the mode of inheritance. Vision Res. 1985;25(1):141–143. doi: 10.1016/0042-6989(85)90088-4. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J., Crognale M. Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis). Vision Res. 1987;27(12):2089–2100. doi: 10.1016/0042-6989(87)90123-4. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J. Polymorphism of the middle wavelength cone in two species of South American monkey: Cebus apella and Callicebus moloch. Vision Res. 1987;27(8):1263–1268. doi: 10.1016/0042-6989(87)90202-1. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision. Vision Res. 1984;24(10):1267–1277. doi: 10.1016/0042-6989(84)90181-0. [DOI] [PubMed] [Google Scholar]
- Kosower E. M. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments). Proc Natl Acad Sci U S A. 1988 Feb;85(4):1076–1080. doi: 10.1073/pnas.85.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LYON M. F. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet. 1962 Jun;14:135–148. [PMC free article] [PubMed] [Google Scholar]
- Liebman P. A., Entine G. Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J Opt Soc Am. 1964 Dec;54(12):1451–1459. doi: 10.1364/josa.54.001451. [DOI] [PubMed] [Google Scholar]
- Mollon J. D., Bowmaker J. K., Jacobs G. H. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):373–399. doi: 10.1098/rspb.1984.0071. [DOI] [PubMed] [Google Scholar]
- Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
- Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
- Neitz M., Neitz J., Jacobs G. H. Spectral tuning of pigments underlying red-green color vision. Science. 1991 May 17;252(5008):971–974. doi: 10.1126/science.1903559. [DOI] [PubMed] [Google Scholar]
- Travis D. S., Bowmaker J. K., Mollon J. D. Polymorphism of visual pigments in a callitrichid monkey. Vision Res. 1988;28(4):481–490. doi: 10.1016/0042-6989(88)90170-8. [DOI] [PubMed] [Google Scholar]
- Vollrath D., Nathans J., Davis R. W. Tandem array of human visual pigment genes at Xq28. Science. 1988 Jun 17;240(4859):1669–1672. doi: 10.1126/science.2837827. [DOI] [PubMed] [Google Scholar]
- Winship P. R. An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res. 1989 Feb 11;17(3):1266–1266. doi: 10.1093/nar/17.3.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama R., Yokoyama S. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9315–9318. doi: 10.1073/pnas.87.23.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]