Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2017 Aug 25.
Published in final edited form as: Org Biomol Chem. 2014 Nov 21;13(4):1053–1067. doi: 10.1039/c4ob02137a

Synthesis and Tautomerization of Hydroxylated Isoflavones Bearing Heterocyclic Hemi-Aminals

Mykhaylo S Frasinyuk a,b,c, Svitlana P Bondarenko d, Volodymyr P Khilya d, Chunming Liu a,e, David S Watt a,b,e, Vitaliy M Sviripa a,b,*
PMCID: PMC5571763  NIHMSID: NIHMS644834  PMID: 25412895

Abstract

The aminomethylation of hydroxylated isoflavones with 2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, and 5-amino-1-pentanol in the presence of excess formaldehyde led principally to 9-(2-hydroalkyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]-oxazin-4-ones 4 and/or the tautomeric 7-hydroxy-8-(1,3-oxazepan-3-ylmethyl)-4H-chromen-4-ones 5. The ratio of these tautomers was dependent on solvent polarity, electronic effects of aryl substituents in the isoflavone and the structure of the amino alcohol. NMR studies confirmed the interconversion of tautomeric forms.

Introduction

In connection with our interest in developing antineoplastic agents targeting cyclin-dependent kinases (CDKs), we sought antagonists that mimicked natural products in the chromone-based alkaloid family such as rohitukine (1a) and chrotacumines A-D1 (1b–d and 2) (Fig. 1). These natural products inhibit CDKs14 and possess a skeleton that couples two, different structural subunits: a 5,7-dihydroxy-2-methylchromone characteristic of the isoflavonoids and a 3-hydroxypiperidine ring found in various alkaloids. Chrotacumine A (2) possesses an interesting hemi-aminal (O/N-acetal) linkage connecting the chromone and piperidine rings. Our interest in developing hydroxylated isoflavones with O/N-acetal subunits, as in chrotacumine A (2), led to an investigation of synthetic pathways to these targets and led to questions regarding tautomerization of hydroxylated isoflavones bearing hemi-aminals.

Figure 1.

Figure 1

Chemical structures of chromone alkaloids.

We required the hemi-aminal functionality as a mimic of the basic heterocycles found in 2, and we required the hydroxyl group as a functional handle to which we would ultimately attach D-(+)-biotin. These biotinylated chromones would provide a means of identifying the biological targets of these analogs, just as we have recently done in other systems.5 We now report the synthesis of various hydroxylated isoflavones bearing heterocyclic hemi-aminals in which we address this tautomerization issue as a necessary prelude to biological studies.

Results and discussion

The Mannich reaction affects the aminomethylation of carbonyl and activated aromatic compounds6,7 and accommodates a range of amines including amino alcohols, N-benzylamino alcohols,8,9 N,N-dibenzylamino alcohols,1012 3,4-dihydro-2H-1,3-benzoxazines,1315 (1,3-oxazolidin-3-yl)methylphenols and (1,3-morpholin-3-yl)methyl phenols.15,16 Despite this precedent and our understanding of the Mannich reaction, we could not predict the outcome and preference for tautomeric forms in Mannich reactions using isoflavones and various ω-amino-1-alcohols. As carbonyl components for our study, we selected isoflavones that included natural products, such as formonotetin (3a) and cladrin (3b), and that also included synthetic isoflavones 3c–3i (Fig. 2) as starting materials for synthesis of aminoalkylated isoflavone derivatives. Since many recent drugs contain one or more fluorine atoms,1719 we included isoflavones bearing either fluoroaryl rings as in 3c and 3f and/or trifluoromethyl groups as in 3g–3i.

Figure 2.

Figure 2

Structures of isoflavones 3 studied in Mannich reactions.

The synthesis of the required 7-hydroxyisoflavones 3 utilized 2,4-hydroxylated deoxybenzoins under Vilsmeier-Haack conditions using boron trifluoride in N,N-dimethylformamide to afford the desired isoflavones 3a–3c. The use of N,N-dimethylacetamide in place of N,N-dimethylformamide led to the formation of 7-hydroxy-2-methylisoflavones 3d–3f. A similar condensation of deoxybenzoins with trifluoroacetic anhydride in pyridine led to the 7-hydroxy-2-trifluoromethylisoflavones 3g–3i. With this range of isoflavones available to us, we were in a position to evaluate the influence of different C-2 substituents (e.g., hydrogen, methyl and trifluoromethyl) in isoflavones on the outcome of Mannich reactions using ω-amino-1-alcohols. In the absence of a specific procedure for the synthesis of chromones2025 bearing heterocyclic substituents, we evaluated published options including the reductive amination of formyl-substituted chromones2629 or the N-alkylation of amines with chloromethyl-substituted chromones.3036 These reports, although encouraging, were limited in scope and led us to develop an alternate, general procedure.

The aminomethylation of isoflavones 3a–f using ω-amino-1-alcohols and an excess of aqueous formaldehyde in isopropanol (Method A) gave mixtures of 3-aryl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-ones25 4a–4f as well as the tautomeric isomer, 7-hydroxy-3-aryl-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one 5a–5f (Scheme 1).

Scheme 1.

Scheme 1

Mannich reactions of isoflavones 3 with formaldehyde and amino alcohols. (a) HOCH2(CH2)nNH2, where n = 1 to 4, CH2O, EtOH or i-PrOH, DMAP, 80 °C, 4– 6 h; (b) bis(1,3-oxazolidin-3-yl)methane, dioxane, 100 °C, 2–4h; (c) 3-butoxymethyl-1,3-oxazolidine, dioxane, 100 °C, 2–4h.

These latter isomers 5a–5f were minor products relative to 4a–4f (Table 1). Schmidt15 recently demonstrated a similar outcome with resorcarene condensations with formaldehyde and ω-amino-1-alcohols but did not report the equilibration of the tautomeric forms. Mass spectral and 1H NMR data for 4 and 5 unambiguously supported these structural assignments in which the following features were most important: [1] an ion with m/z [MH-12]+, which resulted from the loss of the hemi-aminal methylene group from either tautomer 4 or 5; [2] 3J(H,H) values of 8.3–9.2 Hz within the isoflavone ring that confirmed the aminomethylation at position C-8 and excluded aminomethylation at C-5 or C-6; and [3] a singlet at 4.99–5.03 ppm that was assigned to the hemi-aminal methylene group of 4a–4f or a singlet at 4.43–4.49 ppm that was assigned to the hemi-aminal methylene group of 5a–5f. Because 1,3-oxazolidines are chemically equivalent to a mixture of 2-aminoethanol and formaldehyde and useful for the aminomethylation of heterocycles,3740 we also utilized either 3-butoxymethyl-1,3-oxazolidine (Method B, Table 1, entries 3, 9) or bis(oxazolidin-3-yl)methane (Method C, Table 1, entries 5, 7, 10, 12) in the aminomethylation of isoflavones. In all cases using Methods B and C, we observed the formation of a mixture of 4 and 5 in a ratio comparable to that seen with 2-aminoethanol and formaldehyde under conditions described in Method A.

Table 1.

Ratio of tautomeric isomers 4 and 5 obtained from isoflavones 3 and amino alcohols HOCH2(CH2)nNH2 using Method A as the general procedure, unless otherwise noted.

Entry Isofla-vone Amino Alkohol HOCH2(CH2)nNH2 or Equivalent Ratio of 4 to 5, (%)a Solvent Yield, %
1 3a n = 1 95 5 EtOH 68
2 3a n = 1 91 9 i-PrOH 50
3b 3a graphic file with name nihms644834t1.jpg 93 7 1,4-Dioxane 63
4 3b n = 1 88 12 EtOH 49
5c 3b graphic file with name nihms644834t2.jpg 90 10 1,4-Dioxane 45
6 3c n = 1 87 13 i-PrOH 81
7c 3c graphic file with name nihms644834t2.jpg 89 11 1,4-Dioxane 67
8 3d n = 1 88 12 EtOH 47
9b 3d graphic file with name nihms644834t1.jpg 87 13 1,4-Dioxane 42
10c 3d graphic file with name nihms644834t2.jpg 87 13 THF 37
11 3d n = 1 91 9 EtOH 54
12c 3d graphic file with name nihms644834t2.jpg 89 11 1,4-Dioxane 43
13 3f n = 1 92 8 i-PrOH 65
14 3h n = 1 79 21 i-PrOH 60
15 3a n = 2 3 97 EtOH 75
16 3b n = 2 0 100 EtOH 78
17 3c n = 2 0 100 EtOH 65
18 3d n = 2 0 100 i-PrOH 58
19 3e n = 2 3 97 EtOH 52
20 3f n = 2 3 97 i-PrOH 67
21 3g n = 2 3 97 i-PrOH 48
22 3h n = 2 2 98 i-PrOH 83
23 3a n = 3 94 6 i-PrOH 82
24 3b n = 3 94 6 i-PrOH 83
25 3c n = 3 95 5 i-PrOH 78
26 3d n = 3 94 6 i-PrOH 48
27 3d n = 3 94 6 i-PrOH 66
28 3f n = 3 94 6 i-PrOH 93
29 3h n = 3 90 10 i-PrOH 36
30 3i n = 3 85 15 i-PrOH 53
31 3a n = 4 100 0 i-PrOH 65
32 3b n = 4 100 0 i-PrOH 73
33 3c n = 4 100 0 i-PrOH 52
34 3d n = 4 100 0 i-PrOH 66
35 3e n = 4 100 0 i-PrOH 77
36 3f n = 4 100 0 i-PrOH 87
37 3g n = 4 100 0 i-PrOH 41
38 3h n = 4 100 0 i-PrOH 83
39 3i n = 4 100 0 i-PrOH 57
a

determined in CDCl3;

b

used Method B (see Experimental Section);

c

used Method C (see Experimental Section).

In addition to the mass spectral and NMR data in support of the structural assignments of these tautomers, acid-catalyzed hydrolysis of these isomers afforded the amino diols 6 (Scheme 2). The amino diols 6 were a presumed intermediate in route from the isoflavones 3 to the tautomers 4 and 5. A combination of solvent polarity and acidity of the C-7 phenolic group in 3 dictated the balance between the formation of the tautomers 4 and 5 versus the amino diols 6. For example, the isoflavones 3g and 3i possessed an electron-withdrawing trifluoromethyl group that increased the acidity of the C-7 phenolic hydroxyl group. Condensation of these isoflavones with formaldehyde and 2-aminoethanol (Method A) provided exclusively the amino diols 6g and 6i (n=1), respectively. Introduction of two electron-donating methoxy groups, as in isoflavone 3h, counterbalanced the effect of the trifluoromethyl group and led to the formation of oxazolidyl-substituted isoflavone 4h. Solvent also had a dramatic effect on outcomes. For example, aminomethylation of isoflavone 3g with formaldehyde and 3-amino-1-propanol in ethanol led to the amino diol 6g but this same combination of reagents in isopropanol led to the isoflavone 5g bearing the 2-(1,3-oxazinanyl)methyl group. Finally, the aminomethylation of isoflavones 3 with 4-amino-1-butanol or 5-amino-1-pentanol gave predominately the fused tautomer 4 and little or none of the isomeric 5.

Scheme 2.

Scheme 2

Hydrolysis of tautomers 4 and 5 to amino diols 6. (a) HCl, EtOH, 80 °C, 0.5 – 1 h

Unlike the cases where we used either 2-aminoethanol or 3-amino-1-propanol, the trifluoromethyl groups in isoflavones 3g–3i had no influence on the outcome, and these isoflavones led to the oxazines 4 as the principal product. In general, we concluded that polar solvents and electron-withdrawing substituents on the isoflavone led to the formation of the amino diols 6 whereas less polar solvents and electron-donating groups on the isoflavone led to the tautomeric isomers 4 and 5.

NMR techniques allowed us to confirm the equilibration of the isomers 4 and 5 in a manner similar to related tautomerizations reported for 1,3-oxazolidines and 1,3-terahydrooxazines that contain NH proton and could exhibit ring-chain isomerization involving Schiff’s base.4148 For example, the ratio of 4b to 5b was 9:1 in CDCl3 (Fig. 3, Panel B), but this ratio changed to 19:1 in either DMSO-d6 (Fig. 3, Panel C) or CD3OD (Fig. 3, Panel D). The addition of DMSO-d6 to a CDCl3 solution of containing a 9:1 ratio of 4b and 5b also led to an increase in 4b. This increase was best followed by monitoring the hemi-aminal methylene protons (labeled A in Fig. 3, Panel A). On the other hand, if CCl4 were added to a CDCl3 solution of 4b and 5b in DMSO-d6, the ratio changed in favor of 5b. These outcomes were consistent with a hydrogen-bonded complex between the amino group and the C-7 phenolic group in 5b in non-polar solvents such as CCl4 and the disruption of this hydrogen bonding and an equilibrium shift toward 4b in polar solvents such as DMSO-d6 or CD3OD. Preference for the formation N-AlkOH–Solv (for 4) with ArOH–Solv (for 5) was best explained by Pearson’s acid base concepts. Additional confirmation of this point was obtained using a non-polar NMR solvent, C6D6, which showed a similar ratio of 4b to 5b found using CDCl3. Applying polar base solvent Py-d5 showed increased amounts of 4b form, consistent with the expected shift of equilibrium toward 5b due to interaction with ArOH as stronger acid than AlkOH. It should also be noted that the equilibrium between tautomers was rapidly established and remained unchanged after 24 hours.

Figure 3. 1H NMR analysis of isoflavone tautomers.

Figure 3

Panel A: structures of isoflavones 4b, n=1 and 5b, n=1. Panel B: 1H NMR spectra (400 MHz) in CDCl3. Panel C: 1H NMR spectra (400 MHz) in DMSO-d6. Panel D: 1H NMR spectra (400 MHz) in CD3OD.

The 2D NOESY spectrum of tautomers 4b and 5b displayed chemical exchange cross-peaks between pairs of methylene groups, the hemi-aminal methylene groups and the 2-aminoethanol fragments. These chemical exchange cross-peaks had the same phase as the diagonal peaks in contrast to the opposite-phased normal cross-peaks of aromatic protons and methylene groups of the amine fragment for 4b and 5b (Fig. 4). These correlations are the unambiguous evidence of dynamic reversible conversion of tautomers, which is intermediate or slow on the NMR time scale, and these cross-peaks confirm the equilibration between 4b and 5b.

Figure 4.

Figure 4

2D NOESY spectrum of 4b, n=1 and 5b, n=1. Measured at 400 MHz, CDCl3, 25°C. Black peaks are normal NOE, red peaks are chemical exchange NOE. Arrows show cross-peaks between pairs of exchanging protons.

Similar results were obtained for tautomers using 3-aminopropan-1-ol and 4-aminobutan-1-ol. It was unexpected that this tautomerism was observed for 4- aminobutan-1-ol derivatives 4, n=3 and was not observed for 5-aminopentan-1-ol derivatives 4, n=4 despite the expected, increased stability of 1,3-benzoxazine ring for 4, n = 3 or 4 in comparison with 1,3-axazepane (5, n=3) or 1,3-oxazocane (5, n=4) rings. Probably, ring-ring tautomerism of 4, n = 1…3 and 5, n=1…3 is possible due to steric proximity of AlkO-H···N and ArO-H···N fragments together with ring-chain tautomerism in 1,3-diaza and 1,3-oxaza heterocycles.49 We also observed that the 1H NMR spectra of either 4b or 5g in DMSO-d6 did not change when either of these compounds was heated. Finally, we noted that the interconversion of tautomeric forms occurred rapidly in presence of trifluoroacetic acid (TFA) at 20°C (Fig. 5, Panels A and B). Addition of TFA at room temperature and heating to 60°C led to minimal change other than the sharpening of some peaks (Fig. 5, Panel C). Cooling below 20°C led, as expected, to the broadening of signals for aliphatic protons linked to nitrogen.

Figure 5. 1H NMR spectra of tautomers 4b, n=1 5b, and n=1.

Figure 5

Panel A: DMSO-d6, 20 C; Panel B: DMSO-d6 and TFA, 20 C; Panel C: DMSO-d6 and TFA, 60 C.

In summary, a combination of chemical and spectroscopic studies established that isoflavones 3 underwent Mannich reactions with amino alcohols and an excess of formaldehyde to afford principally two tautomeric isomers 4 and 5 that incorporate two molecules of formaldehyde for each amino alcohol. A combination of solvent polarity, electronic effects dictated by aryl substituents in the isoflavone, and the structure of the amino alcohol determined the ratio of these tautomers. In some circumstances, such as in the presence of polar solvents and electron-withdrawing groups on the isoflavone 3, the reaction provided an amino diol 6, a presumed intermediate in the conversion of isoflavones 3 to the tautomers 4 and 5. Spectroscopic studies established the dynamic nature of the equilibrium between these tautomeric forms which presumably occurs through a transitory immonium salt as well as the steric interactions of AlkO(H)···N···(H)OAr fragments.

Experimental

1H and 13C NMR spectra were recorded on a Bruker 500 (500 MHz/125 MHz), Bruker 400 (400 MHz/100 MHz) spectrometer in CDCl3, DMSO-d6, and D2O. 19F NMR spectra were recorded on a Bruker 400 (376 MHz) relative to CFCl3. CDCl3 was stored over K2CO3 to prevent possible formation of HCl. Chemical shifts of compounds 4, n= 1,3,4 and 5, n= 2 are given for the major tautomeric form in the solvents in which the content of the major form was the highest. IR spectra were recorded on a Nicolet Nexus 470 ESP FT/IR spectrometer. Melting points were determined in open capillarity tubes with an Buchi B-535 apparatus and uncorrected. Mass spectra were obtained with an Agilent 1100 using chemical ionization. TLC was conducted on Merck silica gel 60 F254 plates.

General procedure for synthesis of 7-hydroxyisoflavones 3a–3f

To a solution of benzoin (0.1 mol) in 70 mL of N,N-dimethylformamide or N,N-dimethylacetamide at 30–40 °C was added boron trifluoride (38 mL, 0.3 mol). The mixture was stirred for 0.5 h and phosphorous oxytrichloride (18.6 mL, 0.2 mol) was added at the same temperature. The mixture was heated at 55–60°C for 2 h (in the case of 3a–3c) or 6–8 h (in the case of 3d–3f). The mixture was poured into 500 mL of hot water with vigorous stirring and then cooled. A precipitate was collected and washed with water. Recrystallization from methanol gave isoflavones 3a–3f as white or pale yellow powders.

7-Hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one (3a)

Pale yellow solid (20.9 g, 78%); mp 259–261°C (lit.50 mp 256–258°C); 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H, 4′-OCH3), 6.87 (d, 1H, 4J = 2.2 Hz, 8-H), 6.94 (dd, 1H, 3J = 9 Hz, 4J = 2.2 Hz, 6-H), 6.99 (d, 2H, 3J = 8.8 Hz, 3′, 5′-H), 7.52 (d, 2H, 3J = 8.8 Hz, 2′, 6′-H), 7.98 (d, 1H, 3J = 9 Hz, 5-H), 8.31 (s, 1H, 2-H), 10.73 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 55.09 (4′-OCH3), 102.09 (8-C), 113.55 (3′, 5′-C), 115.13 (6-C), 116.61 (4a-C), 123.14 (1′-C), 124.23 (3-C), 127.24 (5-C), 130.02 (2′, 6′-C), 153.03 (2-C), 157.41 (8a-C), 158.92 (4′-C), 162.53 (7-C), 174.56 ppm (4-C); IR (KBr): νmax 3131, 2979, 1639, 1624, 1568, 1513, 1453, 1246 cm−1; MS (CI): m/z (%) 269.1 (100, MH+). Anal. Calcd for C16H12O4: C, 71.64; H, 4.51. Found: C, 71.71; H, 4.56.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-4H-chromen-4-one (3b)

White solid (24.8 g, 83%); mp 254–256°C (lit.51 mp 233–234°C); 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 6H, 3′, 4′-OCH3), 6.88 (d, 1H, 4J = 2.4 Hz, 8-H), 6.96 (dd, 1H, 3J = 8.8 Hz, 4J = 2.4 Hz, 6-H), 7.01 (d, 1H, 3J = 8.3 Hz, 5′-H), 7.13 (dd, 1H, 3J = 8.3 Hz, 4J = 2.0 Hz, 6′-H), 7.20 (d, 1H, 4J = 2.0 Hz, 2′-H), 7.99 (d, 1H, 3J = 8.8 Hz, 5-H), 8.38 (s, 1H, 2-H), 10.82 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 55.52 (3′, 4′-OCH3), 102.16 (8-C), 111.48 (5′-C), 112.79 (2′-C), 115.21 (6-C), 116.68 (4a-C), 121.24 (6′-C), 123.30 (1′-C), 124.60 (3-C), 127.33 (5-C), 148.29, 148.61 (3′, 4′-C), 153.31 (2-C), 157.42 (8a-C), 162.60 (7-C), 174.62 ppm (4-C); IR (KBr): νmax 3200, 3066, 2951, 1625, 1586, 1515, 1214, 1175, 1136 cm−1; MS (CI): m/z (%) 299.2 (100, MH+). Anal. Calcd for C17H14O5: C, 68.45; H, 4.73. Found: C, 68.32; H, 5.01.

3-(4-Fluorophenyl)-7-hydroxy-4H-chromen-4-one (3c)

Pale yellow solid (18.5 g, 72%); mp 233–235°C (lit. mp 52 202–203°C; lit. 53 235–236°C); 1H NMR (400 MHz, DMSO-d6): δ 6.88 (d, 1H, 4J = 2.2 Hz, 8-H), 6.95 (dd, 1H, 3J = 8.8 Hz, 4J = 2.2 Hz, 6-H), 7.25 (t, 2H, 3J(H,H) = 8.8 Hz, 3J(C,F) = 8.8 Hz, 3′, 5′-H), 7.61 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(C,F) = 5.6 Hz, 2′, 6′-H), 7.98 (d, 1H, 3J = 8.8 Hz, 5-H), 8.39 (s, 1H, 2-H), 10.81 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 102.22 (8-C), 114.99 (d, 2J(C,F) = 21.1 Hz, 3′, 5′-C), 115.31 (6-C), 116.58 (4a-C), 122.59 (3-C), 127.32 (5-C), 128.46 (d, 4J(C,F) = 3.5 Hz, 1′-C), 130.96 (d, 3J(C,F) = 8.1 Hz, 2′, 6′-C), 153.80 (2-C), 157.50 (8a-C), 161.85 (d, 1J(C,F) = 244.6 Hz, 4′-C), 162.74 (7-C), 174.38 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −114.73 ppm; IR (KBr): νmax 3421, 3072, 2906, 1635, 1595, 1510, 1332, 1227, 1145, 795 cm−1; MS (CI): m/z (%) 257.1 (100, MH+). Anal. Calcd for C15H9FO3: C, 70.31; H, 3.54. Found: C, 70.60; H, 3.68.

7-Hydroxy-3-(4-methoxyphenyl)-2-methyl-4H-chromen-4-one (3d)

White solid (19.2 g, 68%); mp 286–288 °C; 1H NMR (400 MHz, DMSO-d6): δ 2.23 (s, 3H, 2-CH3), 3.79 (s, 3H, 4′-OCH3), 6.82 (d, 1H, 4J = 2 Hz, 8-H), 6.90 (dd, 1H, 3J = 8.8 Hz, 4J = 2 Hz, 6-H), 6.98 (d, 2H, 3J = 8.8 Hz, 3′, 5′-H), 7.19 (d, 2H, 3J = 8.8 Hz, 2′, 6′-H), 7.87 (d, 1H, 3J = 8.8 Hz, 5-H), 10.74 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 19.17 (2-CH3), 55.05 (4′-OCH3), 101.90 (8-C), 113.45 (3′, 5′-C), 114.72 (6-C), 115.79 (4a-C), 121.70 (1′-C), 125.34 (3-C), 127.12 (5-C), 131.71 (2′, 6′-C), 157.05 (2-C), 158.51 (8a-C), 162.42, 162.44 (7, 4′-C), 174.99 ppm (4-C); IR (KBr): νmax 3249, 2962, 1624, 1608, 1511, 1450, 1291, 1159 cm−1; MS (CI): m/z (%) 283.1 (100, MH+). Anal. Calcd for C17H14O4: C, 72.33; H, 5.00. Found: C, 72.54; H, 4.86.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-2-methyl-4H-chromen-4-one (3e)

White solid (20 g, 64%); mp 227–228°C (lit.54 mp 226–228°C); 1H NMR (400 MHz, DMSO-d6): δ 2.25 (s, 3H, 2-CH3), 3.74 (s, 3H, 3′-OCH3), 3.79 (s, 3H, 4′-OCH3), 6.78 (dd, 1H, 3J = 7.8 Hz, 4J = 1.5 Hz, 6′-H), 6.83 (d, 1H, 4J = 2.4 Hz, 8-H), 6.85 (d, 1H, 4J = 1.5 Hz, 2′-H), 6.90 (dd, 1H, 3J = 8.8 Hz, 4J = 2.4 Hz, 6-H), 6.99 (d, 1H, 3J = 7.8 Hz, 5′-H), 7.87 (d, 1H, 3J = 8.8 Hz, 5-H), 10.74 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 19.20 (2-CH3), 55.46, 55.52 (3′, 4′-OCH3), 101.89 (8-C), 111.38 (5′-C), 114.35 (2′-C), 114.72 (6-C), 115.62 (4a-C), 122.00 (1′-C), 122.84 (6′-C), 125.74 (3-C), 127.11 (5-C), 148.14, 148.26 (3′, 4′-C), 157.03 (8a-C), 162.40 (2-C), 162.57 (7-C), 174.95 ppm (4-C); IR (KBr): νmax 3151, 2953, 1630, 1593, 1516, 1453, 1269, 1160 cm−1; MS (CI): m/z (%) 313.1 (100, MH+). Anal. Calcd for C18H16O5: C, 69.22; H, 5.16. Found: C, 68.95; H, 5.27.

3-(4-Fluorophenyl)-7-hydroxy-2-methyl-4H-chromen-4-one (3f)

Pale yellow solid (19.5 g, 72%); mp 284–285°C; 1H NMR (400 MHz, DMSO-d6): δ 2.23 (s, 3H, 2-CH3), 6.83 (d, 1H, 4J = 1.7 Hz, 8-H), 6.90 (dd, 1H, 3J = 8.8 Hz, 4J = 1.7 Hz, 6-H), 7.24 (t, 2H, 3J(H,H) = 8.8 Hz, 3J(C,F) = 8.8 Hz, 3′, 5′-H), 7.31 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(C,F) = 5.8 Hz, 2′, 6′-H), 7.87 (d, 1H, 3J = 8.8 Hz, 5-H), 10.75 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 19.16 (2-CH3), 101.93 (8-C), 114.84 (6-C), 114.90 (d, 2J(C,F) = 21.5 Hz, 3′, 5′-C), 115.48 (4a-C), 121.16 (3-C), 127.10 (5-C), 129.61 (d, 4J(C,F) = 3.5 Hz, 1′-C), 132.61 (d, 3J(C,F) = 8.8 Hz, 2′, 6′-C), 157.07 (8a-C), 161.51 (d, 1J(C,F) = 244.2 Hz, 4′-C), 162.54 (7-C), 162.73 (2-C), 174.75 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −115.24 ppm; IR (KBr): νmax 3272, 3074, 1632, 1585, 1511, 1452, 1227,1159 cm−1; MS (CI): m/z (%) 271.1 (100, MH+-12). Anal. Calcd for C16H11FO3: C, 71.11; H, 4.10. Found: C, 71.02; H, 4.39.

General procedure for synthesis of 7-hydroxy-2-(trifluoromethyl)isoflavones 3g–3i

To a solution of 10 mmol of the appropriate deoxybenzoin in 20 mL of pyridine was added 30 mmol of trifluoroacetic anhydride dropwise with cooling in an ice bath. After standing at 25°C for 48 h, the mixture was poured into 100 mL of ice water, and the precipitate was collected and recrystallized from methanol.

7-Hydroxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)-4H-chromen-4-one (3g)

Pale yellow solid (2.8 g, 67%); mp 149–151°C; 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 3H, 4′-OCH3), 6.93 (d, 1H, 4J = 2.2 Hz, 8-H), 6.97–7.04 (m, 3H, 6, 3′, 5′-H), 7.19 (d, 2H, 3J = 8.8 Hz, 2′, 6′-H), 7.93 (d, 1H, 3J = 9.0 Hz, 5-H), 11.06 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 55.10 (4′-OCH3), 102.18 (8-C), 113.39 (3′, 5′-C), 115.41 (4a-C), 116.26 (6-C), 119.45 (q, 1J(C,F) = 276.0 Hz, 2-CF3), 121.32 (1′-C), 124.71 (3-C), 127.46 (5-C), 131.20 (2′, 6′-C), 146.49 (q, 2J(C,F) = 34.8 Hz, 2-C), 156.44 (8a-C), 159.43 (4′-C), 163.84 (7-C), 175.21 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −63.07 ppm; IR (KBr): νmax 3296, 2971, 1638, 1604, 1455, 1274, 1191 cm−1; MS (CI): m/z (%) 337.2 (100, MH+). Anal. Calcd for C17H11F3O4: C, 60.72; H, 3.30. Found: C, 60.95; H, 3.48.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-2-(trifluoromethyl)-4H-chromen-4-one (3h)

Pale yellow solid (2.6 g, 71%); mp 232–233°C; 1H NMR (400 MHz, DMSO-d6): δ 3.72 (s, 3H, 3′-OCH3), 3.80 (s, 3H, 4′-OCH3), 6.79 (dd, 1H, 3J = 8.3 Hz, 4J = 2 Hz, 6′-H), 6.88 (d, 1H, 4J = 2 Hz, 2′-H), 6.94 (d, 1H, 4J = 2 Hz, 8-H), 6.99–7.04 (m, 2H, 6, 5′-H),7.94 (d, 1H, 3J = 8.3 Hz, 5-H), 11.13 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 55.44 (3′-OCH3), 55.54 (4′-OCH3), 102.18 (8-C), 111.12 (5′-C), 113.71 (2′-C), 115.42 (4a-C), 116.29 (6-C), 119.44 (q, 1J(C,F) = 276.0 Hz, 2-CF3), 121.55 (1′-C), 122.41 (6′-C), 124.89 (3-C), 127.49 (5-C), 146.49 (q, 2J(C,F) = 34.9 Hz, 2-C), 148.08, 148.98 (3′, 4′-C), 156.40 (8a-C), 163.78 (7-C), 175.17 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −63.07 ppm; IR (KBr): νmax 3378, 2942, 1650, 1611, 1516, 1270, 1214, 1140 cm−1; MS (CI): m/z (%) 367.2 (100, MH+). Anal. Calcd for C18H13F3O5: C, 59.02; H, 3.58. Found: C, 58.76; H, 3.45.

3-(4-Fluorophenyl)-7-hydroxy-2-(trifluoromethyl)-4H-chromen-4-one (3i)

Pale yellow solid (2.4 g, 75%); mp 212–213°C; 1H NMR (400 MHz, DMSO-d6): δ 6.94 (d, 1H, 4J = 2 Hz, 8-H), 7.02 (dd, 1H, 3J = 8.8 Hz, 4J = 2 Hz, 6-H), 7.21–7.36 (m, 4H, 3-C6H4F), 7.92 (d, 1H, 3J = 8.8 Hz, 5-H), 11.07 ppm (s, 1H, 7-OH); 13C NMR (100 MHz, DMSO-d6): δ 102.24 (8-C), 114.95 (d, 2J(C,F) = 21.1 Hz, 3′, 5′-C), 115.38 (4a-C), 116.37 (6-C), 119.33 (q, 1J(C,F) = 276.2 Hz, 2-CF3), 124.05 (3-C), 125.82 (d, 4J(C,F) = 3.5 Hz, 1′-C), 127.48 (5-C), 132.12 (d, 3J(C,F) = 8.4 Hz, 2′, 6′-C), 146.64 (q, 2J(C,F) = 35.2 Hz, 2-C), 156.47 (8a-C), 162.27 (d, 1J(C,F) = 245.8 Hz, 4′-C), 163.92 (7-C), 175.02 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −113.83, −63.24 ppm; IR (KBr): νmax 3185, 1639, 1602, 1459, 1272, 1197, 1151 cm−1; MS (CI): m/z (%):325.1 (100, MH+). Anal. Calcd for C16H8F4O3: C, 59.27; H, 2.49. Found: C, 59.53; H, 2.30.

General procedures for the aminomethylation of 7-hydroxyisoflavones 3 with 2-aminoethanol

Method A

A solution of 2.5 mmol of isoflavones 3a–3i, 3 mmol of 2-aminoethanol, 6 mmol of aqueous 37% formaldehyde, and 1–2 mg of 4-(N,N-dimethylamino)pyridine in 10 mL of solvent (see Table 1) was refluxed for 4–6 h. The mixture was cooled, and the precipitate was collected. If precipitation did not occur, the mixture was diluted with 10 mL of hexane or the solution was concentrated. The products were recrystallized from a mixture of isopropanol and hexane.

9-(2-Hydroxyethyl)-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4a, n=1)

White solid (480 mg, 68%); mp 114–116°C; 1H NMR (400 MHz, CDCl3): δ 2.98 (t, 2H, 3J = 5.2 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.2 Hz, 2″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.23 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.89 (d, 1H, 3J = 8.9 Hz, 6-H), 6.98 (d, 2H, 3J = 9 Hz, 3′, 5′-H), 7.49 (d, 2H, 3J = 9 Hz, 2′, 6′-H), 7.93 (s, 1H, 2-H), 8.10 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 44.83 (1″-C), 53.70 (10-C), 55.23 (4′-OCH3), 59.35 (2″-C), 83.38 (8-C), 107.32 (10a-C), 113.85 (3′, 5′-C), 115.17 (6-C), 117.93 (4a-C), 123.94 (1′-C), 124.83 (3-C), 125.30 (5-C), 130.00 (2′, 6′-C), 151.53 (2-C), 154.45 (10b-C), 158.31 (4′-C), 159.50 (6a-C), 175.76 ppm (4-C); IR (KBr): νmax 3410, 2958, 2846, 1632, 1592, 1434, 1250 cm−1; MS (CI): m/z (%) 342.2 (100, MH+-12). Anal. Calcd for C20H19NO5: C, 67.98; H, 5.42; N, 3.96. Found: C, 68.25; H, 5.31; N, 4.15.

3-(3,4-Dimethoxyphenyl)-9-(2-hydroxyethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4b, n=1)

White solid (375 mg, 49%); mp 126–128°C; 1H NMR (400 MHz, CDCl3): δ 2.98 (t, 2H, 3J = 5.2 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.2 Hz, 2″-CH2), 3.92 (s, 3H, 3′-OCH3), 3.94 (s, 3H, 4′-OCH3), 4.23 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.90 (d, 1H, 3J = 9 Hz, 6-H), 6.93 (d, 1H, 3J = 8.3 Hz, 5′-H), 7.05 (dd, 1H, 4J = 2.1 Hz, 3J = 8.3 Hz, 6′-H), 7.21 (d, 1H, 4J = 2.1 Hz, 2′-H), 7.96 (s, 1H, 2-H), 8.10 ppm (d, 1H, 3J = 9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 44.89 (1″-C), 53.78 (10-C), 55.94 (3′-OCH3), 55.96 (4′-OCH3), 59.33 (2″-C), 83.42 (8-C), 107.31 (10a-C), 111.19 (5′-C), 112.54 (2′-C), 115.35 (6-C), 118.09 (4a-C), 121.03 (6′-C), 124.46 (1′-C), 125.07 (3-C), 125.48 (5-C), 148.79, 149.18 (3′, 4′-C), 151.74 (2-C), 154.52 (10b-C), 158.41 (6a-C), 175.86 ppm (4-C); IR (KBr): νmax 3264, 2980, 2880, 1644, 1602, 1442, 1284, 1156 cm−1; MS (CI): m/z (%) 372.2 (100, MH+-12). Anal. Calcd for C21H21NO6: C, 65.79; H, 5.52; N, 3.65. Found: C, 65.49; H, 5.41; N, 3.88.

3-(4-Fluorophenyl)-9-(2-hydroxyethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4c, n=1)

White solid (550 mg, 81%); mp 149–151°C; 1H NMR (400 MHz, CDCl3): δ 2.98 (t, 2H, 3J = 5.1 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.1 Hz, 2″-CH2), 4.23 (s, 2H, 10-CH2), 5.01 (s, 2H, 8-CH2), 6.91 (d, 1H, 3J = 8.8 Hz, 6-H), 7.13 (t, 2H, 3J(H,H) = 8.8 Hz, 3J(H,F) = 8.8 Hz, 3′, 5′-H), 7.53 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(H,F) = 5.5 Hz, 2′, 6′-H), 7.94 (s, 1H, 2-H), 8.10 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 44.89 (1″-C), 53.77 (10-C), 59.38 (2″-C), 83.45 (8-C), 107.40 (10a-C), 115.38 (d, 2J(C,F) = 21.9 Hz, 3′, 5′-C), 115.43 (6-C), 117.96 (4a-C), 124.48 (3-C), 125.41 (5-C), 127.68 (d, 4J(C,F) = 3.5 Hz, 1′-C), 130.64 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 151.93 (2-C), 154.54 (10b-C), 158.55 (6a-C), 162.70 (d, 1J(C,F) = 247.8 Hz, 4′-C), 175.50 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −114.14 ppm; IR (KBr): νmax 3434, 2950, 2860, 1632, 1600, 1442, 1250 cm-1; MS (CI): m/z (%) 330.2 (100, MH+-12). Anal. Calcd for C19H16FNO4: C, 66.86; H, 4.72; N, 4.10. Found: C, 67.03; H, 4.61; N, 4.12.

9-(2-Hydroxyethyl)-3-(4-methoxyphenyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4d, n=1)

White solid (342 mg, 47%); mp 151–153°C; 1H NMR (400 MHz, CDCl3): δ 2.31 (s, 3H, 2-CH3), 2.99 (t, 2H, 3J = 5.2 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.2 Hz, 2″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.23 (s, 2H, 10-CH2), 4.99 (s, 2H, 8-CH2), 6.85 (d, 1H, 3J = 8.9 Hz, 6-H), 6.97 (d, 2H, 3J = 8.7 Hz, 3′, 5′-H), 7.20 (d, 2H, 3J = 8.7 Hz, 2′, 6′-H), 8.02 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.36 (2-CH3), 44.97 (1″-C), 53.75 (10-C), 55.25 (4′-OCH3), 59.30 (2″-C), 83.32 (8-C), 106.95 (10a-C), 113.87 (3′, 5′-C), 114.82 (6-C), 116.99 (4a-C), 123.08 (1′-C), 125.10 (3-C), 125.40 (5-C), 131.49 (2′, 6′-C), 154.17 (10b-C), 158.16 (2-C), 159.10 (4′-C), 162.23 (6a-C), 176.48 ppm (4-C); IR (KBr): νmax 3434, 2925, 2833, 1630, 1606, 1437, 1246 cm−1; MS (CI): m/z (%) 356.3 (100, MH+-12). Anal. Calcd for C21H21NO5: C, 68.65; H, 5.76; N, 3.81. Found: C, 68.77; H, 5.51; N, 3.94.

3-(3,4-Dimethoxyphenyl)-9-(2-hydroxyethyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4e, n=1)

White solid (431 mg, 54%); mp 168–170°C (decomp); 1H NMR (400 MHz, CDCl3): δ 2.31 (s, 3H, 2-CH3), 2.98 (t, 2H, 3J = 5.2 Hz, 1″-CH2), 3.76 (t, 2H, 3J = 5.2 Hz, 2″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.91 (s, 3H, 4′-OCH3), 4.22 (s, 2H, 10-CH2), 4.99 (s, 2H, 8-CH2), 6.78–6.83 (m, 2H, 2′, 5′-H), 6.85 (d, 1H, 3J = 8.8 Hz, 6-H), 6.91–6.69 (m, 1H, 6′-H), 8.01 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.34 (2-CH3), 44.92 (1″-C), 53.69 (10-C), 55.81 (3′, 4′-OCH3), 59.30 (2″-C), 83.29 (8-CH2), 106.95 (10a-C), 111.13 (5′-C), 113.60 (2′-C), 114.78 (6-C), 116.88 (4a-C), 122.70 (6′-C), 123.19 (1′-C), 125.25 (5-C), 125.48 (3-C), 148.55, 148.70 (3′, 4′-C), 154.09 (10b-C), 158.15 (2-C), 162.34 (6a-C), 176.37 ppm (4-C); IR (KBr): νmax 3474, 2964, 2930, 2834, 1634, 1620, 1434, 1252 cm−1; MS (CI): m/z (%) 386.1 (100, MH+-12). Anal. Calcd for C22H23NO6: C, 66.49; H, 5.83; N, 3.52. Found: C, 66.65; H, 5.91; N, 3.37.

3-(4-Fluorophenyl)-9-(2-hydroxyethyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4f, n=1)

White solid (465 mg, 65%); mp 112–114 °C; 1H NMR (400 MHz, CDCl3): δ 2.30 (s, 3H, 2-CH3), 2.98 (t, 2H, 3J = 5.2 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.2 Hz, 2″-CH2), 4.23 (s, 2H, 10-CH2), 4.99 (s, 2H, 8-CH2), 6.85 (d, 1H, 3J = 9.2 Hz, 6-H), 7.12 (t, 2H, 3J(H,H)= 8.5 Hz, 3J(H,F) = 8.5 Hz, 3′, 5′-H), 7.25 (dd, 2H, 3J(H,H) = 8.5 Hz, 4J(H,F) = 5.6 Hz, 2′, 6′-H), 8.01 ppm (d, 1H, 3J = 9.2 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.38 (2-CH3), 45.05 (1″-C), 53.82 (10-C), 59.43 (2″-C), 83.44 (8-C), 107.13 (10a-C), 115.03 (6-C), 115.39 (d, 2J(C,F) = 21.9 Hz, 3′, 5′-C), 116.92 (4a-C), 124.64 (3-C), 125.36 (5-C), 128.93 (d, 4J(C,F) = 3.5 Hz, 1′-C), 132.17 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 154.23 (10b-C), 158.41 (2-C), 162.37 (d, 1J(C,F) = 246.8 Hz, 4′-C), 162.38 (6a-C), 176.22 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −114.83 ppm; IR (KBr): νmax 3436, 2946, 2844, 1634, 1604, 1510, 1436, 1248 cm−1; MS (CI): m/z (%) 344.1 (100, MH+-12). Anal. Calcd for C20H18FNO4: C, 67.60; H, 5.11; N, 3.94. Found: C, 67.51; H, 4.88; N, 3.79.

3-(3,4-Dimethoxyphenyl)-9-(2-hydroxyethyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4h, n=1)

White solid (540 mg, 60%); mp 168–170°C; 1H NMR (400 MHz, CDCl3): δ 2.99 (t, 2H, 3J = 5.1 Hz, 1″-CH2), 3.78 (t, 2H, 3J = 5.1 Hz, 2″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.93 (s, 3H, 4′-OCH3), 4.26 (s, 2H, 10-CH2), 5.03 (s, 2H, 8-CH2), 6.76–6.86 (m, 2H, 2′, 6′-H), 6.92–6.96 (m, 2H, 6, 5′-H), 8.03 ppm (d, 1H, 3J = 9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 44.70 (1″-C), 53.80 (10-C), 55.81 (3′-OCH3), 55.84 (4′-OCH3), 59.33 (2″-C), 83.67 (8-C), 107.57 (10a-C), 110.84 (5′-C), 113.07 (2′-C), 116.36 (6-C), 116.78 (4a-C), 119.44 (q, 1J(C,F) = 277.8 Hz, 2-CF3), 121.09 (6′-C), 122.50 (1′-C), 125.57 (5-C), 127.78 (3-C), 148.02 (q, 2J(C,F) = 35.9 Hz, 2-C), 148.59, 149.49 (3′, 4′-C), 153.37 (10b-C), 159.51 (6a-C), 176.25 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −63.95 ppm; IR (KBr): νmax 3527, 2940, 2913, 2839, 1651, 1608, 1435, 1216, 1144, 1134 cm−1; MS (CI): m/z (%) 440.1 (100, MH+-12). Anal. Calcd for C22H20F3NO6: C, 58.54; H, 4.47; N, 3.10. Found: C, 58.30; H, 4.66; N, 2.83.

7-Hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-3-(4-methoxyphenyl)-2-(trifluoromethyl)-4H-chromen-4-one (6g, n=1)

White solid (600 mg, 73%); mp 207–208°C; 1H NMR (400 MHz, DMSO-d6): δ 2.86 (t, 2H, 3J = 5.4 Hz, 1″-CH2), 3.60 (t, 2H, 3J = 5.4 Hz, 2″-CH2), 3.80 (s, 3H, 4′-OCH3), 4.19 (s, 2H, 8-CH2), 6.63 (d, 1H, 3J = 9 Hz, 6-H), 6.99 (d, 2H, 3J = 8.5 Hz, 3′, 5′-H), 7.16 (d, 2H, 3J = 8.5 Hz, 2′, 6′-H), 7.71 ppm (d, 1H, 3J = 9 Hz, 5-H); 13C NMR (125 MHz, DMSO-d6): δ 42.74 (1″-C), 49.04 (8-CH2), 55.04 (4′-OCH3), 57.92 (2″-C), 105.58 (8-C), 110.73 (4a-C), 113.17 (3′, 5′-C), 118.96 (6-C), 119.93 (q, 1J(C,F) = 276.0 Hz, 2-CF3), 121.60 (3-C), 124.01 (1′-C), 125.65 (5-C), 131.01 (2′, 6′-C), 145.05 (q, 2J(C,F) = 34.8 Hz, 2-C), 154.48 (8a-C), 159.07 (4-C), 171.42 (7-C), 174.12 ppm (4′-C); 19F NMR (376 MHz, DMSO-d6): δ −61.96 ppm; IR (KBr): νmax 3427, 2912, 1639, 1608, 1396, 1286, 1180 cm−1; MS (CI): m/z (%) 410.1 (100, MH+). Anal. Calcd for C20H18F3NO5: C, 58.68; H, 4.43; N, 3.42. Found: C, 58.81; H, 4.21; N, 3.58.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-2-(trifluoromethyl)-4H-chromen-4-one (6h, n=1)

White solid (595 mg, 63%); mp 230–232°C; 1H NMR (400 MHz, DMSO-d6): δ 2.96–3.13 (m, 2H, 1″-CH2), 3.68–3.90 (m, 8H, 3′, 4′-OCH3, 2″-CH2), 4.32 (s, 2H, 8-CH2), 5.20–5.40 (br. s, 1H, OH), 6.76–6.86 (m, 2H, 2′, 6′-H), 7.04 (d, 1H, 3J = 8.1 Hz, 5′-H), 7.31 (d, 1H, 3J = 9 Hz, 6-H), 8.01 (d, 1H, 3J = 9 Hz, 5-H), 8.70–9.28 (br. s, 2H, NH2+), 11.91–12.52 ppm (br. s, 1H, 7-OH); 13C NMR (125 MHz, DMSO-d6): δ 38.46 (1″-C), 49.33 (8-CH2), 55.44 (3′-OCH3), 55.53 (4′-OCH3), 56.17 (2″-C), 105.56 (8-C), 111.18 (5′-C), 113.58 (2′-C), 115.14 (6-C), 115.48 (4a-C), 119.27 (q, 1J(C,F) = 276.3 Hz, 2-CF3), 121.05 (6′-C), 122.33 (1′-C), 124.71 (3-C), 127.88 (5-C), 146.55(q, 2J(C,F) = 35.9 Hz, 2-C), 147.99, 148.97 (3′, 4′-C), 154.75 (8a-C), 162.74 (7-C), 175.08 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −60.72 ppm; IR (KBr): νmax 3400, 3126, 2962, 1655, 1612, 1454, 1272 cm−1; MS (CI): m/z (%) 440.1 (100, MH+). Anal. Calcd for C21H20F3NO6-HCl: C, 53.01; H, 4.45; N, 2.94. Found: C, 52.83; H, 4.20; N, 3.28.

3-(4-Fluorophenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-2-(trifluoromethyl)-4H-chromen-4-one (6i, n=1)

White solid (639 mg, 80%); mp 216–218°C (decomp); 1H NMR (400 MHz, DMSO-d6): δ 2.87 (t, 2H, 3J = 5.4 Hz, 1″-CH2), 3.60 (t, 2H, 3J = 5.4 Hz, 2″-CH2), 4.18 (s, 2H, 8-CH2), 6.60 (d, 1H, 3J = 9 Hz, 6-H), 7.23–7.33 (m, 4H, 3-C6H4F), 7.69 ppm (d, 1H, 3J = 9 Hz, 5-H); 13C NMR (100 MHz, DMSO-d6): δ 42.56 (1″-C), 49.00 (8-CH2), 57.82 (2″-C), 105.46 (8-C), 110.27 (4a-C), 114.69 (d, 2J(C,F) = 21.5 Hz, 3′, 5′-C), 119.39 (6-C), 119.44 (q, 1J(C,F) = 276.1 Hz, 2-CF3), 123.34 (3-C), 125.66 (5-C), 126.17 (d, 4J(C,F) = 3.0 Hz, 1′-C), 131.98 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 145.14 (q, 2J(C,F) = 35.0 Hz, 2-C), 154.69 (8a-C), 161.97 (d, 1J(C,F) = 244.7 Hz, 4′-C), 172.27 (7-C), 173.77 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −112.03, −61.00 ppm; IR (KBr): νmax 3425, 2913, 1639, 1601, 1450, 1286, 1143 cm−1; MS (CI): m/z (%) 398.1 (100, MH+). Anal. Calcd for C19H15F4NO4: C, 57.44; H 3.81; N, 3.53. Found: C, 57.41; H, 3.98; N, 3.76

Method B

A solution of 2.5 mmol of isoflavone 3a or 3d, 3 mmol of bis(1,3-oxazolidin-3-yl)methane55,56 in 10 mL of 1,4-dioxane was refluxed for 2–4 h. The mixture was cooled; the solvent was evaporated; and the product was treated with hexane to obtain a precipitate that was recrystallized from a mixture of isopropanol and hexane to afford 3a or 3d. Compounds 3a and 3d were identical to material synthesized by Method A.

Method C

A solution of 2.5 mmol of isoflavone 3b–3e and 3 mmol of 3-butoxymethyl-1,3-oxazolidine57 in 10 mL of 1,4-dioxane was refluxed for 2–4 h. The mixture was cooled; the solvent was evaporated; and the product was isolated in the same fashion as described in Method A.

Synthesis of 8-(2-hydroxyethylaminomethyl)-7-hydroxyisoflavone hydrochlorides 6a–6f where n=1

A solution of 2.5 mmol of isoflavone 3a–3f, 3 mmol of 2-aminoethanol, 6 mmol of aqueous 37% formaldehyde, and 1–2 mg of 4-(N,N-dimethylamino)pyridine in 10 mL of ethanol was refluxed for 4–6 h. To this mixture was added 0.2 mL of concentrated hydrochloric acid, and the mixture was refluxed for 10–15 min. The product was cooled to afford precipitated hydrochlorides that were collected and recrystallized from a mixture of methanol and acetonitrile.

7-Hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-3-(4-methoxyphenyl)-4H-chromen-4-one hydrochloride (6a, n=1)

White solid (591 mg, 78%); mp 187–191°C; 1H NMR (400 MHz, DMSO-d6): δ 2.99–3.10 (m, 2H, 1″-CH2), 3.66–3.74 (m, 2H, 2″-CH2), 3.80 (s, 3H, 4′-OCH3), 4.28–4.37 (m, 2H, 8-CH2), 7.01 (d, 2H, 3J = 8.7 Hz, 3′, 5′-H), 7.20 (d, 1H, 3J = 8.9 Hz, 6-H), 7.51 (d, 2H, 3J = 8.7 Hz, 2′, 6′-H), 8.05 (d, 1H, 3J = 8.9 Hz, 5-H), 8.43 (s, 1H, 2-H), 8.88–8.98 (m, 2H, NH2+), 11.84 ppm (br. s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 39.56 (1″-C), 49.23 (8-CH2), 55.81 (4′-OCH3), 56.96 (2″-C), 105.02 (8-C), 114.30 (3′, 5′-C), 115.26 (6-C), 116.95 (4a-C), 123.79, 123.82 (3, 1′-C), 129.10 (5-C), 130.37 (2′, 6′-C), 154.43 (2-C), 156.36 (8a-C), 159.25 (4′-C), 162.02 (7-C), 177.76 ppm (4-C); IR (KBr): νmax 3388, 2958, 2834, 1626, 1512, 1448, 1294 cm−1; MS (CI): m/z (%) 342.2 (100, MH+). Anal. Calcd for C19H19NO5-HCl: C, 60.40; H, 5.34; N, 3.71. Found: C, 60.16; H, 5.48; N, 4.25.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-4H-chromen-4-one hydrochloride (6b, n=1)

White solid (565 mg, 69%); mp 221–223°C; 1H NMR (400 MHz, DMSO-d6): δ 3.01–3.09 (m, 2H, 1″-CH2), 3.69–3.75 (m, 2H, 2″-CH2), 3.79 (s, 6H, 3′, 4′-OCH3), 4.30–4.37 (m, 2H, 8-CH2), 7.02 (d, 1H, 3J = 8.5 Hz, 5′-H), 7.13 (dd, 1H, 3J = 8.5 Hz, 4J = 1.7 Hz, 6′-H), 7.18 (d, 1H, 4J = 1.7 Hz, 2′-H), 7.23 (d, 1H, 3J = 9 Hz, 6-H), 8.05 (d, 1H, 3J = 9 Hz, 5-H), 8.46 (s, 1H, 2-H), 8.92–9.05 (m 2H, NH2+), 11.85 ppm (br. s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 39.63 (1″-C), 49.35 (8-CH2), 55.84 (3′-OCH3), 56.06 (4′-OCH3), 59.99 (2″-C), 104.96 (8-C), 111.60 (5′-C), 112.09 (2′-C), 115.15 (6-C), 116.90 (4a-C), 121.60 (6′-C), 123.36 (1′-C), 124.04 (3-C), 129.05 (5-C), 147.82, 148.32 (3′, 4′-C), 154.49 (2-C), 156.06 (8a-C), 161.91 (7-C), 177.47 ppm (4-C); IR (KBr): νmax 3427, 3247, 3016, 1645, 1622, 1516, 1450, 1286 cm−1; MS (CI): m/z (%) 372.2 (100, MH+). Anal. Calcd for C20H21NO6-HCl: C, 58.90; H, 5.44; N, 3.43. Found: C, 58.61; H, 5.72; N, 3.38.

3-(4-Fluorophenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-4H-chromen-4-one hydrochloride (6c, n=1)

White solid (551 mg, 75%); mp 238–240°C; 1H NMR (400 MHz, DMSO-d6): δ 2.99–3.91(m, 2H, 1″-CH2), 3.68–3.75 (m, 2H, 2″-CH2), 4.33 (s, 2H, 8-CH2), 7.24 (d, 1H, 3J = 8.8 Hz, 6-H), 7.29 (t, 2H, 3J(H,H)= 7.8 Hz, 3J(H,F) = 7.8 Hz, 3′, 5′-H), 7.61 (dd, 2H, 3J(H,H) = 7.8 Hz, 4J(H,F) = 5.9 Hz, 2′, 6′-H), 8.05 (d, 1H, 3J = 8.8 Hz, 5-H), 8.49 (s, 1H, 2-H), 8.96–9.06 (br. s, 2H, NH2+), 11.92 ppm (s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 39.61, (1″-C), 49.29 (8-CH2), 56.96 (2″-C), 105.29 (8-C), 115.48 (6-C), 116.01 (d, 2J(C,F) = 21.4 Hz, 3′, 5′-C), 117.00 (4a-C), 124.04 (3-C), 127.43 (d, 4J(C,F) = 3.5 Hz, 1′-C), 129.14 (5-C), 131.38 (d, 3J(C,F) = 8.5 Hz, 2′, 6′-C), 155.01 (2-C), 156.68 (8a-C), 162.25 (7-C), 163.15 (d, 1J(C,F) = 245.3 Hz, 4′-C), 178.08 ppm (4-C); 19F NMR (376 MHz, D2O): δ −113.50 ppm; IR (KBr): νmax 3423, 2964, 1635, 1623, 1508, 1442, 1267 cm−1; MS (CI): m/z (%) 330.2 (100, MH+). Anal. Calcd for C18H16FNO4-HCl: C, 59.10; H, 4.68; N, 3.83. Found: C, 58.78; H, 4.91; N, 3.15.

7-Hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-3-(4-methoxyphenyl)-2-methyl-4H-chromen-4-one hydrochloride (6d, n=1)

White solid (538 mg, 69%); mp 207–209°C; 1H NMR (400 MHz, DMSO-d6): δ 2.33 (s, 3H, 2-CH3), 3.02–3.10 (m, 2H, 1″-CH2), 3.72–3.77 (m, 2H, 2″-CH2), 3.79 (s, 3H, 4′-OCH3), 4.30–4.37 (m, 2H, 8-CH2), 6.99 (d, 2H, 3J = 8.8 Hz, 3′, 5′-H), 7.16–7.22 (m, 3H, 6, 2′, 6′-H), 7.94 (d, 1H, 3J = 8.8 Hz, 5-H), 8.97–9.05 (m, 2H, NH2+), 11.78 ppm (br. s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 19.51 (2-CH3), 39.64 (1″-C), 49.27 (8-CH2), 56.05 (4′-OCH3), 56.97 (2″-C), 105.02 (8-C), 114.67 (3′, 5′-C), 114.94 (6-C), 116.02 (4a-C), 122.46 (1′-C), 125.30 (3-C), 128.95 (5-C), 132.26 (2′, 6′-C), 156.23 (8a-C), 159.26 (4′-C), 161.89 (2-C), 166.19 (7-C), 178.73 ppm (4-C); IR (KBr): νmax 3392, 2962, 1641, 1631, 1513, 1450, 1267 cm−1; MS (CI): m/z (%) 356.3 (100, MH+). Anal. Calcd for C20H21NO5-HCl: C, 61.30; H, 5.66; N, 3.57. Found: C, 61.58; H, 5.93; N, 3.84.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-2-methyl-4H-chromen-4-one hydrochloride (6e, n=1)

White solid (540 mg, 64%); mp 234–236°C; 1H NMR (400 MHz, DMSO-d6): δ 2.33 (s, 3H, 2-CH3), 3.01–3.09 (m, 2H, 1″-CH2), 3.68–3.82 (m, 8H, 3′, 4′-OCH3, 2″-CH2), 4.29–4.37 (m, 2H, 8-CH2), 5.29–5.38 (br. s, 1H, CH2OH), 6.78 (dd, 1H, 4J = 1.7 Hz, 3J = 8.3 Hz, 6′-H), 6.82 (d, 1H, 4J = 1.7 Hz, 2′-H), 7.01 (d, 1H, 3J = 8.3 Hz, 5′-H), 7.18 (d, 1H, 3J = 8.8 Hz, 6-H), 7.94 (d, 1H, 3J = 8.8 Hz, 5-H), 8.91–9.05 (br. s, 2H, NH2+), 11.77 ppm (s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 19.49 (2-CH3), 39.61 (1″-C), 49.31 (8-CH2), 56.32 (3′-OCH3), 56.36 (4′-OCH3), 56.97 (2″-C), 105.02 (8-C), 112.30 (5′-C), 114.70 (6-C), 114.90 (2′-C), 116.01 (4a-C), 122.57 (1′-C), 124.04 (6′-C), 125.69 (3-C), 128.91 (5-C), 148.59, 148.62 (3′, 4′-C), 156.17 (8a-C), 161.86 (2-C), 166.22 (7-C), 178.56 ppm (4-C); IR (KBr): νmax 3436, 2996, 1637, 1608, 1518, 1446, 1265 cm−1; MS (CI): m/z (%) 386.1 (100, MH+). Anal. Calcd for C21H23NO6-HCl: C, 59.79; H, 5.73; N, 3.32. Found: C, 60.02; H, 6.00; N, 3.13.

3-(4-Fluorophenyl)-7-hydroxy-8-{[(2-hydroxyethyl)amino]methyl}-2-methyl-4H-chromen-4-one hydrochloride (6f, n=1)

White solid (465 mg, 61%); mp 140–142°C; 1H NMR (400 MHz, DMSO-d6): δ 2.32 (s, 3H, 2-CH3), 3.03–3.11 (m, 2H, 1″-CH2), 3.70–3.77 (m, 2H, 2″-CH2), 4.34 (s, 2H, 8-CH2), 5.32 (br. s, 1H, OH), 7.17 (d, 1H, 3J = 8.5 Hz, 6-H), 7.24–7.34 (m, 4H, 3-C6H4F), 7.95 (d, 1H, 3J = 8.5 Hz, 5-H), 8.89–9.08 (br. s, 2H, NH2+), 11.79 ppm (s, 1H, 7-OH); 13C NMR (125 MHz, D2O): δ 19.45 (2-CH3), 39.61 (1″-C), 49.27 (8-CH2), 56.96 (2″-C), 105.09 (8-C), 115.03 (6-C), 115.94 (4a-C), 116.18 (d, 2J(C,F) = 21.9 Hz, 3′, 5′-C), 122.25 (3-C), 128.82 (d, 4J(C,F) = 3.0 Hz, 1′-C), 128.94 (5-C), 132.85 (d, 3J(C,F) = 8.5 Hz, 2′, 6′-C), 156.36 (8a-C), 162.07 (2-C), 162.98 (d, 1J(C,F) = 247.8 Hz, 4′-C), 166.55 (7-C), 178.88 ppm (4-C); 19F NMR (376 MHz, D2O): δ −113.79 ppm; IR (KBr): νmax 3403, 2962, 1637, 1601, 1508, 1448, 1211 cm−1; MS (CI): m/z (%) 344.1 (100, MH+). Anal. Calcd for C19H18FNO4-HCl: C, 60.08; H, 5.04; N, 3.69. Found: C, 59.86; H, 5.25; N, 3.98.

General procedure for the aminomethylation of 7-hydroxyisoflavones 3 with 3-amino-1-propanol

A solution of 2.5 mmol of isoflavone 3a–3i, 3 mmol of 3-amino-1-propanol, 6 mmol of aqueous 37% formaldehyde, and 1–2 mg of 4-(N,N-dimethylamino)pyridine in 10 mL of isopropanol was refluxed for 4–6 h. The mixture was cooled and the precipitate was collected. If precipitation did not occur, the mixture was concentrated, and the residue was treated with hexane. The precipitated material was recrystallized from a mixture of isopropanol and hexane.

7-Hydroxy-3-(4-methoxyphenyl)-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5a, n=2)

White solid (550 mg, 75%); mp 129–131°C; 1H NMR (500 MHz, CDCl3): δ 1.77–19.91 (m, 2H, 5″-CH2), 2.97–3.05 (m, 2H, 4″-CH2), 3.83 (s, 3H, 4′-OCH3), 3.86–3.93 (m, 2H, 6″-CH2), 4.28 (s, 2H, 8-CH2), 4.38 (s, 2H, 2″-CH2), 6.89 (d, 1H, 3J = 8.7 Hz, 6-H), 6.96 (d, 2H, 3J = 8.7 Hz, 3′, 5′-H), 7.48 (d, 2H, 3J = 8.7 Hz, 2′, 6′-H), 7.90 (s, 1H, 2-H), 8.13 ppm (d, 1H, 3J = 8.7 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 22.11 (5″-C), 47.08 (4″-C), 49.48 (8-CH2), 55.26 (4′-OCH3), 67.71 (6″-C), 83.59 (2″-C), 106.68 (8-C), 113.88 (3′, 5′-C), 115.59 (6-C), 117.30 (4a-C), 124.15 (1′-C), 124.48 (3-C), 126.95 (5-C), 130.05 (2′, 6′-C), 151.38 (2-C), 155.25 (8a-C), 159.52 (4′-C), 163.39 (7-C), 175.78 ppm (4-C); IR (KBr): νmax 3425, 2964, 1633, 1601, 1405, 1255 cm−1; MS (CI): m/z (%) 356.3 (100, MH+-12). Anal. Calcd for C21H21NO5: C, 68.65; H, 5.76; N, 3.81. Found: C, 68.39; H, 5.55; N, 4.11.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5b, n=2)

White solid (623 mg, 78%); mp 261–263°C; 1H NMR (500 MHz, CDCl3): δ 1.78–1.90 (m, 2H, 5″-CH2), 3.00–3.08 (m, 2H, 4″-CH2), 3.87–3.98 (m, 8H, 3′, 4′-OCH3, 6″-CH2), 4.30 (s, 2H, 8-CH2), 4.38 (s, 2H, 2″-CH2), 6.89–6.96 (m, 2H, 6-H, 5′-H), 7.05 (dd, 1H, 3J = 8.4 Hz, 4J = 2.0 Hz, 6′-H), 7.22 (d, 1H, 4J = 2.0 Hz, 2′-H), 7.94 (s, 1H, 2-H), 8.14 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 22.15 (5″-C), 47.28 (4″-C), 49.54 (8-CH2), 55.95 (3′-OCH3), 55.96 (4′-OCH3), 67.80 (6″-C), 83.65 (2″-C), 106.95 (8-C), 111.25 (5′-C), 112.64 (2′-C), 115.69 (6-C), 117.35 (4a-C), 120.99 (6′-C), 124.58 (3-C), 124.71 (1′-C), 126.87 (5-C), 148.81, 149.12 (3′, 4′-C), 151.53 (2-C), 155.20 (4a-C), 163.52 (7-C), 175.82 ppm (4-C); IR (KBr): νmax 3427, 1632, 1603, 1411, 1267 cm−1; MS (CI): m/z (%) 386.3 (100, MH+-12). Anal. Calcd for C22H23NO6: C, 66.49; H, 5.83; N, 3.52. Found: C, 66.58; H, 5.99; N, 3.67.

3-(4-Fluorophenyl)-7-hydroxy-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5c, n=2)

White solid (461 mg, 65%); mp 116–118°C; 1H NMR (400 MHz, CDCl3): δ 1.78–1.92 (m, 2H, 5″-CH2), 2.97–3.07 (m, 2H, 4″-CH2), 3.86–3.97 (m, 2H, 6″-CH2), 4.29 (s, 2H, 8-CH2), 4.38 (s, 2H, 2″-CH2), 6.91 (d, 1H, 3J = 9 Hz, 6-H), 7.12 (t, 2H, 3J(H,H) = 8.5 Hz,, 3J(H,F) = 8.5 Hz, 3′, 5′-H), 7.53 (dd, 2H, 3J(H,H) = 8.5 Hz, 4J(H,F) = 5.6 Hz, 2′, 6′-H), 7.91 (s, 1H, 2-H), 8.13 ppm (d, 1H, 3J = 9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 22.12 (5″-C), 47.28 (4″-C), 49.53 (8-CH2), 67.81 (6″-C), 83.63 (2″-C), 106.99 (8-C), 115.38 (d, 2J(C,F) = 21.4 Hz, 3′, 5′-C), 115.81 (6-C), 117.27 (4a-C), 124.09 (3-C), 126.91 (5-C), 127.89 (d, 4J(C,F) = 3.0 Hz, 1′-C), 130.65 (d, 3J(C,F) = 7.5 Hz, 2′, 6′-C), 151.73 (2-C), 155.25 (8a-C), 162.69 (d, 1J(C,F) = 246.3 Hz, 4′-C), 163.66 (7-C), 175.52 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −114.37 ppm; IR (KBr): νmax 3427, 2850, 1632, 1597, 1510, 1414,1232 cm−1; MS (CI): m/z (%) 344.3 (100, MH+-12). Anal. Calcd for C20H18FNO4: C, 67.60; H, 5.11; N, 3.94. Found: C, 67.38; H, 5.34; N, 4.17.

7-Hydroxy-3-(4-methoxyphenyl)-2-methyl-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5d, n=2)

White solid (444 mg, 58%); mp 258–260°C; 1H NMR (500 MHz, CDCl3): δ 1.79–1.91 (m, 2H, 5″-CH2), 2.31 (s, 2H, 2-CH3), 2.96–3.06 (m, 2H, 4″-CH2), 3.84 (s, 3H, 4′-OCH3), 3.88–3.96 (m, 2H, 6″-CH2), 4.28 (s, 2H, 8-CH2), 4.40 (s, 2H, 2″-CH2), 6.86 (d, 1H, 3J = 8.8 Hz, 6-H), 6.96 (d, 2H, 3J = 8.3 Hz, 3′, 5′-H), 7.20 (d, 2H, 3J = 8.3 Hz, 2′, 6′-H), 8.05 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.41 (2-CH3), 22.31 (5″-C), 47.48 (4″-C), 49.43 (8-CH2), 55.29 (4′-OCH3), 67.84 (6″-C), 83.98 (2″-C), 106.59 (8-C), 113.88 (3′, 5′-C), 115.17 (6-C), 116.33 (4a-C), 122.68 (1′-C), 125.38 (3-C), 126.84 (5-C), 131.58 (2′, 6′-C), 154.89 (8a-C), 159.09 (2-C), 161.81 (4′-C), 163.23 (7-C), 176.44 ppm (4-C); IR (KBr): νmax 3432, 2958, 1651, 1606, 1400, 1261, 1213, 1140 cm−1; MS (CI): m/z (%) 412.1 (100, MH+-12). Anal. Calcd for C22H23NO5: C, 69.28; H, 6.08; N, 3.67. Found: C, 68.99; H, 6.22; N, 3.89.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-2-methyl-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5e, n=2)

White solid (430 mg, 52%); mp 156–158°C; 1H NMR (500 MHz, CDCl3): δ 1.81–1.90 (m, 2H, 5″-CH2), 2.33 (s, 3H, 2-CH3), 2.99–3.06 (m, 2H, 4″-CH2), 3.87–3.98 (m, 8H, 3′, 4′-OCH3, 6″-CH2), 4.29 (s, 2H, 8-CH2), 4.41 (s, 2H, 2″-CH2), 6.79–6.74 (m, 2H, 2′, 6′-H), 6.87 (d, 1H, 3J = 8.9 Hz, 6-H), 6.93 (d, 1H, 3J = 9 Hz, 5′-H), 8.06 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.39 (2-CH3), 22.15 (5″-C), 47.10 (4″-C), 49.33 (8-CH2), 55.87 (3′, 4′-OCH3), 67.70 (6″-C), 83.78 (2″-C), 106.21 (8-C), 111.23 (5′-C), 113.77 (2′-C), 115.19 (6-C), 116.22 (4a-C), 122.79 (6′-C), 122.85 (1′-C), 125.67 (3-C), 126.95 (5-C), 148.60, 148.77 (3′, 4′-C), 154.92 (8a-C), 162.12 (2-C), 163.17 (7-C), 176.41 ppm (4-C); IR (KBr): νmax 3429, 2931, 1635, 1601, 1512, 1410, 1259 cm−1; MS (CI): m/z (%) 400.2 (100, MH+-12). Anal. Calcd for C23H25NO6: C, 67.14; H, 6.12; N, 3.40. Found: C, 67.40; H, 6.03; N, 3.58.

3-(4-Fluorophenyl)-7-hydroxy-2-methyl-8-(1,3-oxazinan-3-ylmethyl)-4H-chromen-4-one (5f, n=2)

White solid (496 mg, 67%); mp 141–143°C; 1H NMR (400 MHz, CDCl3): δ 1.78–1.90 (m, 2H, 5″-CH2), 2.30 (s, 2H, 2-CH3), 2.98–3.05 (m, 2H, 4″-CH2), 3.87–3.94 (m, 2H, 6″-CH2), 4.28 (s, 2H, 8-CH2), 4.40 (s, 2H, 2″-CH2), 6.86 (d, 1H, 3J = 8.8 Hz, 6-H), 7.06–7.15 (m, 2H, 3′, 5′-H), 7.21–7.28 (m, 2H, 2′, 6′-H), 8.04 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.32 (2-CH3), 22.22 (5″-C), 47.40 (4″-C), 49.39 (8-CH2), 67.78 (6″-C), 83.88 (2″-C), 106.60 (8-C), 115.30 (6-C), 116.27 (d, 2J(C,F) = 21.4 Hz, 3′, 5′-C), 116.14 (4a-C), 122.16 (3-C), 126.74 (5-C), 129.04 (d, 4J(C,F) = 3.0 Hz, 1′-C), 132.16 (d, 3J(C,F) = 9.0 Hz, 2′, 6′-C), 154.85 (8a-C), 161.91 (2-C), 162.28 (d, 1J(C,F) = 246.8 Hz, 4′-C), 163.37 (7-C), 176.13 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −115.07 ppm; IR (KBr): νmax 3427, 2964, 1634, 1605, 1510, 1406 cm−1; MS (CI): m/z (%) 358.3 (100, MH+-12). Anal. Calcd for C21H20FNO4: C, 68.28; H, 5.46; N, 3.79. Found: C, 68.57; H, 5.18; N, 3.94.

7-Hydroxy-3-(4-methoxyphenyl)-8-(1,3-oxazinan-3-ylmethyl)-2-(trifluoromethyl)-4H-chromen-4-one (5g, n=2)

White solid (419 mg, 48%); mp 128–130°C; 1H NMR (500 MHz, CDCl3): δ 1.79–1.89 (m, 2H, 5″-CH2), 2.96–3.03 (m, 2H, 4″-CH2), 3.85 (s, 3H, 4′-OCH3), 3.87–3.94 (m, 2H, 6″-CH2), 4.26 (s, 2H, 8-CH2), 4.40 (s, 2H, 2″-CH2), 6.91–7.00 (m, 3H, 6, 3′, 5′-H), 7.18 (d, 2H, 3J = 8.7 Hz, 2′, 6′-H), 8.05 ppm (d, 1H, 3J = 8.7 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 22.40 (5″-C), 47.34 (4″-C), 49.56 (8-CH2), 55.26 (4′-OCH3), 67.75 (6″-C), 84.07 (2″-C), 107.01 (8-C), 113.73 (3′, 5′-C), 116.09 (4a-C), 116.75 (6-C), 119.64 (q, 3J(C,F) = 276.3 Hz, 2-CF3), 121.05 (1′-C), 125.06 (3-C), 127.14 (5-C), 131.11 (2′, 6′-C), 147.35 (q, 3J(C,F) = 39.5 Hz, 2-C), 154.12 (8a-C), 159.97 (4′-C), 164.71 (7-C), 176.28 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −63.91 ppm; IR (KBr): νmax 3432, 1651, 1610, 1516, 1295, 1192, 1140 cm−1; MS (CI): m/z (%) 424.2 (100, MH+-12). Anal. Calcd for C22H20F3NO5: C, 60.69; H, 4.63; N, 3.22. Found: C, 60.90; H, 4.58; N, 2.99.

3-(3,4-Dimethoxyphenyl)-7-hydroxy-8-(1,3-oxazinan-3-ylmethyl)-2-(trifluoromethyl)-4H-chromen-4-one (5h, n=2)

White solid (770 mg, 83%); mp 214–216°C; 1H NMR (400 MHz, CDCl3): δ 1.81–1.90 (m, 2H, 5″-CH2), 2.97–3.04 (m, 2H, 4″-CH2), 3.83–3.95 (m, 8H, 3′, 4′-OCH3, 6″-CH2), 4.27 (s, 2H, 8-CH2), 4.40 (s, 2H, 2″-CH2), 6.76–6.86 (m, 2H, 2′, 6′-H), 6.91–6.97 (m, 2H, 6, 5′-H), 8.06 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 22.24 (5″-C), 47.20 (4″-C), 49.38 (8-CH2), 55.70 (3′-OCH3), 55.72 (4′-OCH3), 67.60 (6″-C), 83.88 (2″-C), 106.97 (8-C), 110.69 (5′-C), 112.97 (2′-C), 115.86 (4a-C), 116.62 (6-C), 119.46 (q, 1J(C,F) = 276.4 Hz, 2-CF3), 121.18 (1′-C), 122.41 (6′-C), 124.94 (3-C), 126.83 (5-C), 147.33 (q, 2J(C,F) = 36.0 Hz, 2-C), 148.44, 149.28 (3′, 4′-C), 153.91 (8a-C), 164.63 (7-C), 176.13 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −63.15 ppm; IR (KBr): νmax 3435, 2931, 1647, 1606, 1261, 1219, 1140 cm−1; MS (CI): m/z (%) 424.1 (100, MH+-12). Anal. Calcd for C23H22F3NO6: C, 59.39; H, 4.76; N, 3.01. Found: C, 59.11; H, 4.55; N, 2.87.

7-Hydroxy-8-{[(3-hydroxypropyl)amino]methyl}-3-(4-methoxyphenyl)-2-(trifluoromethyl)-4H-chromen-4-one (6g, n=2)

White solid (625 mg, 74%); mp 214–216°C; 1H NMR (400 MHz, DMSO-d6): δ 1.65–1.76 (m, 2H, 2″-CH2), 2.77–2.93 (m, 2H, 1″-CH2), 3.44–3.52 (m, 2H, 3″-CH2), 3.80 (s, 3H, 4′-OCH3), 4.13 (s, 2H, 8-CH2), 6.59 (d, 1H, 3J = 8.8 Hz, 6-H), 6.98 (d, 2H, 3J = 8.5 Hz, 3′, 5′-H), 7.15 (d, 2H, 3J = 8.5 Hz, 2′, 6′-H), 7.68 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (100 MHz, DMSO-d6): δ 29.98 (2″-C), 42.74 (1″-C), 44.43 (8-CH2), 55.05 (4′-OCH3), 58.37 (3″-C), 104.82 (8-C), 109.94 (4a-C), 113.16 (3′, 5′-C), 119.52 (6-C), 119.58 (q, 1J(C,F) = 275.1 Hz, 2-CF3), 121.71 (3-C), 123.97 (1′-C), 125.68 (5-C), 131.03 (2′, 6′-C), 144.86 (q, 2J(C,F) = 34.6 Hz, 2-C), 154.72 (4′-C), 159.05 (8a-C), 172.68 (7-C), 173.91 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −60.82 ppm; IR (KBr): νmax 3423,3075, 2925, 1641, 1599, 1282, 1180, 1144 cm−1; MS (CI): m/z (%) 424.1 (100, MH+). Anal. Calcd for C21H20F3NO5: C, 59.57; H, 4.76; N, 3.31. Found: C, 59.91; H, 5.07; N, 3.12.

3-(4-Fluorophenyl)-7-hydroxy-8-{[(3-hydroxypropyl)amino]methyl}-2-(trifluoromethyl)-4H-chromen-4-one (6i, n=2)

White solid (536 mg, 65%); mp 211–213°C; 1H NMR (400 MHz, CDCl3): δ 1.65–1.79 (m, 2H, 2″-CH2), 2.82–2.93 (m, 2H, 1″-CH2), 3.44–3.53 (m, 2H, 3″-CH2), 4.19 (s, 2H, 8-CH2), 6.66 (d, 1H, 3J = 8.7 Hz, 6-H), 7.24–7.31 (m, 4H, 3-C6H4F), 7.73 ppm (d, 1H, 3J = 8.7 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 29.83 (2″-C), 42.67 (1″-C), 44.40 (8-CH2), 58.32 (3″-C), 104.61 (8-C), 109.88 (4a-C), 114.65 (d, 2J(C,F) = 21.4 Hz, 3′, 5′-C), 119.41 (q, 1J(C,F) = 276.8 Hz, 2-CF3), 119.59 (6-C), 123.32 (3-C), 125.70 (5-C), 126.15 (d, 4J(C,F) = 3.5 Hz, 1′-C), 131.93 (d, 3J(C,F) = 8.5 Hz, 2′, 6′-C), 145.00 (q, 2J(C,F) = 34.4 Hz, 2-C), 154.74 (8a-C), 161.92 (d, 1J(C,F) = 245.3 Hz, 4′-C), 172.73 (7-C), 173.57 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −112.01, −60.92 ppm; IR (KBr): νmax 3433, 3084, 1641, 1601, 1396, 1282, 1193, 1151 cm−1; MS (CI): m/z (%) 412.1 (100, MH+). Anal. Calcd for C20H17F4NO4: C, 58.40; H, 4.17; N, 3.41. Found: C, 58.67; H, 4.03; N, 3.12.

Aminomethylation of 7-hydroxyisoflavones with either 4-amino-1-butanol or 5-amino-1-pentanol

A solution of 2 mmol of isoflavone 3a–3i, 2.4 mmol of the appropriate ω-aminoalkan-1-ol, 2.4 mmol of paraformaldehyde, and 1–2 mg of 4-(N,N-dimethylamino)pyridine in 10 mL of isopropanol was refluxed for 4–6 h. The mixture was cooled and diluted with 40–60 mL of hexane. The precipitate was collected and recrystallized from a mixture of isopropanol and hexane.

9-(4-Hydroxybutyl)-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4a, n=3)

White solid (625 mg, 82%); mp 145–147°C; 1H NMR (400 MHz, CDCl3): δ 1.67–1.75 (m, 4H, 2″, 3″-CH2), 2.81 (t, 2H, 3J = 6.4 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 5.8 Hz, 4″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 4.98 (s, 2H, 8-CH2), 6.88 (d, 1H, 3J = 8.8 Hz, 6-H), 6.98 (d, 2H, 3J = 8.8 Hz, 3′, 5′-H), 7.50 (d, 2H, 3J = 8.8 Hz, 2′, 6′-H), 7.92 (s, 1H, 2-H), 8.09 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (100 MHz, CDCl3): δ 24.86 (2″-C), 30.69 (3″-C), 44.77 (1″-C), 51.56 (10-C), 55.29 (4′-OCH3), 62.58 (4″-C), 82.84 (8-C), 107.35 (10a-C), 113.91 (3′, 5′-C), 115.14 (6-C), 118.01 (4a-C), 124.05 (3-C), 124.92 (1′-C), 125.36 (5-C), 130.08 (2′, 6′-C), 151.55 (2-C), 154.59 (10b-C), 158.33 (4′-C), 159.53 (6a-C), 175.86 ppm (4-C); IR (KBr): νmax 3265, 2940, 1640, 1631, 1509, 1436, 1249, 1034 cm−1; MS (CI): m/z (%) 370.2 (100, MH+-12). Anal. Calcd for C22H23NO5: C, 69.28; H, 6.08; N, 3.67. Found: C, 68.93; H, 6.33; N, 3.94.

9-(4-Hydroxypentyl)-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4a, n=4)

White solid (515 mg, 65.1%); mp 110–111 °C; 1H NMR (400 MHz, CDCl3): δ 1.40–1.50 (m, 2H, 3″-CH2), 1.58–1.68 (m, 4H, 2″, 4″-CH2), 2.77 (t, 2H, 3J = 6.4 Hz, 1″-CH2), 3.77 (t, 2H, 3J = 6.4 Hz, 5″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.18 (s, 2H, 10-CH2), 4.97 (s, 2H, 8-CH2), 6.87 (d, 1H, 3J = 8.9 Hz, 6-H), 6.98 (d, 2H, 3J = 8.5 Hz, 3′, 5′-H), 7.50 (d, 2H, 3J = 8.5 Hz, 2′, 6′-H), 7.93 (s, 1H, 2-H), 8.08 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.26 (3″-C), 27.79 (2″-C), 32.43 (4″-C), 44.94 (1″-C), 51.60 (10-C), 55.30 (4′-OCH3), 62.70 (5″-C), 83.14 (8-C), 107.60 (10a-C), 113.91 (3′, 5′-C), 115.15 (6-C), 117.92 (4a-C), 124.11 (3-C), 124.89 (1′-C), 125.22 (5-C), 130.09 (2′, 6′-C), 151.54 (2-C), 154.61 (10b-C), 158.55 (4′-C), 159.53 (6a-C), 175.89 ppm (4-C); IR (KBr): νmax 3433, 2934, 1644, 1629, 1510, 1252, 1178, 1034, 823 cm−1; MS (CI): m/z (%) 384.1 (100, MH+-12); Anal. Calcd for C23H25NO5: C 69.86, H 6.37, N 3.54. Found: C 70.15, H 6.47, N 3.28.

3-(3,4-Dimethoxyphenyl)-9-(4-hydroxybutyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4b, n=3)

White solid (684 mg, 83%); mp 132–133°C; 1H NMR (400 MHz, CDCl3): δ 1.45–1.57 (m, 4H, 2″, 3″-CH2), 2.81 (t, 2H, 3J = 6.5 Hz, 1″-CH2), 3.69 (t, 2H, 3J = 5.8 Hz, 4″-CH2), 3.91 (s, 3H, 3′-OCH3), 3.93 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 4.97 (s, 2H, 8-CH2), 6.88 (d, 1H, 3J = 8.9 Hz, 6-H), 6.92 (d, 1H, 3J = 8.3 Hz, 5′-H), 7.04 (dd, 1H, 3J = 8.5 Hz, 4J = 2.0 Hz, 6′-H), 7.20 (d, 1H, 4J = 2.0 Hz, 2′-H), 7.95 (s, 1H, 2-H), 8.08 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (100 MHz, CDCl3): δ 24.92 (2″-C), 30.75 (3″-C), 44.87 (1″-C), 51.64 (10-C), 55.96 (3′-OCH3), 55.98 (4′-OCH3), 62.64 (4″-C), 82.90 (8-C), 107.37 (10a-C), 111.18 (5′-C), 112.55 (2′-C), 115.20 (6-C), 118.01 (4a-C), 120.98 (6′-C), 124.51 (1′-C), 124.98 (3-C), 125.29 (5-C), 148.72, 149.09 (3′, 4′-C), 151.64 (2-C), 154.52 (10b-C), 158.37 (6a-C), 175.77 ppm (4-C); IR (KBr): νmax 3262, 2936, 1640, 1627, 1517, 1434, 1250, 1145, 1028 cm−1; MS (CI): m/z (%) 400.2 (100, MH+-12). Anal. Calcd for C23H25NO6: C, 67.14; H, 6.12; N, 3.40. Found: C, 67.42; H, 5.81; N, 3.70.

3-(3,4-Dimethoxyphenyl)-9-(4-hydroxypentyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4b, n=4)

White solid (620 mg, 73%); mp 109–110°C; 1H NMR (400 MHz, CDCl3): δ 1.42–1.50 (m, 2H, 3″-CH2), 1.58–1.69 (m, 4H, 2″, 4″-CH2), 2.78 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.67 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 3.92 (s, 3H, 3′-OCH3), 3.93 (s, 3H, 4′-OCH3), 4.18 (s, 2H, 10-CH2), 4.97 (s, 2H, 8-CH2), 6.87 (d, 1H, 3J = 8.9 Hz, 6-H), 6.93 (d, 1H, 3J = 8.3 Hz, 5′-H), 7.05 (dd, 1H, 4J = 2.0 Hz, 3J = 8.3 Hz, 6′-H), 7.21 (d, 1H, 4J = 2.0 Hz, 2′-H), 7.96 (s, 1H, 2-H), 8.08 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.24 (3″-C), 27.76 (2″-C), 32.40 (4″-C), 44.91 (1″-C), 51.59 (10-C), 55.87 (3′-OCH3), 55.90 (4′-OCH3), 62.68 (5″-C), 83.14 (8-C), 107.58 (10a-C), 111.06 (5′-C), 112.42 (2′-C), 115.22 (6-C), 117.87 (4a-C), 120.94 (6′-C), 124.52 (1′-C), 124.90 (3-C), 125.16 (5-C), 148.67, 149.02 (3′, 4′-C), 151.70 (2-C), 154.56 (10b-C), 158.59 (6a-C), 175.89 ppm (4-C); IR (KBr): νmax 3300, 2935, 1634, 1517, 1433, 1252, 1142, 1026 cm−1; MS (CI): m/z (%) 414.3 (100, MH+-12). Anal. Calcd for C24H27NO6: C, 67.75; H, 6.40; N, 3.29. Found: C, 68.01; H, 6.32; N, 3.03.

3-(4-Fluorophenyl)-9-(4-hydroxybutyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4c, n=3)

White solid (576 mg, 78%); mp 113–115°C; 1H NMR (400 MHz, CDCl3): δ 1.58–1.76 (m, 4H, 2″, 3″-CH2), 2.82 (t, 2H, 3J = 6.5 Hz, 1″-CH2), 3.70 (t, 2H, 3J = 5.6 Hz, 4″-CH2), 4.20 (s, 2H, 10-CH2), 4.98 (s, 2H, 8-CH2), 6.88 (d, 1H, 3J = 9.0 Hz, 6-H), 6.89 (t, 2H, 3J(H,H)= 8.8 Hz, 3J(H,F) = 8.8 Hz, 3′, 5′-H), 7.53 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(H,F) = 5.4 Hz, 2′, 6′-H), 7.93 (s, 1H, 2-H), 8.08 ppm (d, 1H, 3J = 9.0 Hz, 5-H); 13C NMR (100 MHz, CDCl3): δ 24.82 (2″-C), 30.63 (3″-C), 44.81 (1″-C), 51.60 (10-C), 62.56 (4″-C), 82.92 (8-C), 107.47 (10a-C), 115.35 (6-C), 115.39 (d, 2J(C,F) = 21.7 Hz, 3′, 5′-C), 117.94 (4a-C), 124.47 (3-C), 125.31 (5-C), 127.74 (d, 4J(C,F) = 3.0 Hz, 1′-C), 130.66 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 151.93 (2-C), 154.63 (10b-C), 158.59 (6a-C), 162.70 (d, 1J(C,F) = 247.2 Hz, 4′-C), 175.57 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −114.51 ppm; IR (KBr): νmax 3348, 2939, 2863, 1647, 1511, 1433, 1246, 1224 cm−1; MS (CI): m/z (%) 358.1 (100, MH+-12). Anal. Calcd for C21H20FNO4: C, 68.28; H, 5.46; N, 3.79. Found: C, 68.47; H, 5.30; N, 4.07.

3-(4-Fluorophenyl)-9-(4-hydroxypentyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4c, n=4)

White solid (402 mg, 52.4%); mp 97–98 °C; 1H NMR (400 MHz, CDCl3): δ 1.41–1.49 (m, 2H, 3″-CH2), 1.59–1.68 (m, 4H, 2″, 4″-CH2), 2.77 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.70 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 4.19 (s, 2H, 10-CH2), 4.98 (s, 2H, 8-CH2), 6.88 (d, 1H, 3J = 8.9 Hz, 6-H), 7.13 (t, 2H, 3J(H,H)= 8.8 Hz, 3J(H,F) = 8.8 Hz, 3′, 5′-H), 7.53 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(H,F) = 5.5 Hz, 2′, 6′-H), 7.94 (s, 1H, 2-H), 8.08 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.28 (3″-C), 27.80 (2″-C), 32.43 (4″-C), 44.96 (1″-C), 51.65 (10-C), 62.71 (5″-C), 83.20 (8-C), 107.68 (10a-C), 115.37 (6-C), 115.40 (d, 2J(C,F) = 21.2 Hz, 3′, 5′-C), 117.86 (4a-C), 124.46 (3-C), 125.23 (5-C), 127.80 (d, 4J(C,F) = 3.4 Hz, 1′-C), 130.66 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 151.92 (2-C), 154.66 (10b-C), 158.78, (6a-C) 162.70 (d, 1J(C,F) = 247.6 Hz, 4′-C), 175.60 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −114.48 ppm; IR (KBr): νmax 3475, 2936, 1634, 1435 1242, 1217 cm−1; MS (CI): m/z (%) 372.1 (100, MH+-12); Anal. Calcd for C22H22FNO4: C 68.92, H 5.78, N 3.65. Found: C 68.77, H 5.68, N 3.91.

9-(4-Hydroxybutyl)-3-(4-methoxyphenyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4d, n=3)

White solid (377 mg, 48%); mp 122–123°C; 1H NMR (400 MHz, CDCl3): δ 1.63–1.79 (m, 4H, 2″, 3″-CH2), 2.31 (s, 3H, 2-CH3), 2.82 (t, 2H, 3J = 6.5 Hz, 1″-CH2), 3.69 (t, 2H, 3J = 5.6 Hz, 4″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 4.96 (s, 2H, 8-CH2), 6.83 (d, 1H, 3J = 8.8 Hz, 6-H), 6.97 (d, 2H, 3J = 8.2 Hz, 3′, 5′-H), 7.20 (d, 2H, 3J = 8.2 Hz, 2′, 6′-H), 8.01 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (100 MHz, CDCl3): δ 19.36 (2-CH3), 24.90 (2″-C), 30.71 (3″-C), 45.03 (1″-C), 51.64 (10-C), 55.24 (4′-OCH3), 62.56 (4″-C), 82.66 (8-C), 107.01 (10a-C), 113.84 (3′, 5′-C), 114.69 (6-C), 116.98 (4a-C), 123.03 (1′-C), 125.17 (3-C), 125.26 (5-C), 131.49 (2′, 6′-C), 154.21 (10b-C), 158.15 (2-C), 159.07 (4′-C), 162.17 (6a-C), 176.45 ppm (4-C); IR (KBr): νmax 3340, 2934, 2832, 1631, 1608, 1512, 1437, 1246, 1177 cm−1; MS (CI): m/z (%) 384.1 (100, MH+-12). Anal. Calcd for C23H25NO5: C, 69.86; H, 6.37; N, 3.54. Found: C, 70.14; H, 6.76; N, 3.28.

9-(4-Hydroxypentyl)-3-(4-methoxyphenyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4d, n=4)

White solid (541 mg, 66%); mp 120–121°C; 1H NMR (400 MHz, CDCl3): δ 1.40–1.50 (m, 2H, 3″-CH2), 1.57–1.70 (m, 4H, 2″, 4″-CH2), 2.31 (s, 3H, 2-CH3), 2.78 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.67 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 3.85 (s, 3H, 4′-OCH3), 4.18 (s, 2H, 10-CH2), 4.96 (s, 2H, 8-CH2), 6.82 (d, 1H, 3J = 8.7 Hz, 6-H), 6.97 (d, 2H, 3J = 8.8 Hz, 3′, 5′-H), 7.20 (d, 2H, 3J = 8.8 Hz, 2′, 6′-H), 8.00 ppm (d, 1H, 3J = 8.7 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.38 (2-CH3), 23.27 (3″-C), 27.81 (2″-C), 32.42 (4″-C), 45.11 (1″-C), 51.62 (10-C), 55.23(4′-OCH3), 62.70 (5″-C), 83.00 (8-C), 107.25 (10a-C), 113.81 (3′, 5′-C), 114.68 (6-C), 116.85 (4a-C), 122.97 (1′-C), 125.14 (3-C), 125.22 (5-C), 131.50 (2′, 6′-C), 154.21 (10b-C), 158.33 (2-C), 158.99 (4′-C), 162.08 (6a-C), 176.49 ppm (4-C); IR (KBr): νmax 3455, 2939, 1636, 1612, 1512, 1406, 1243, 1029 cm−1; MS (CI): m/z (%) 398.3 (100, MH+-12). Anal. Calcd for C24H27NO5: C, 70.40; H, 6.65; N, 3.42. Found: C, 70.21; H, 6.37; N, 3.68.

3-(3,4-Dimethoxyphenyl)-9-(4-hydroxybutyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4e, n=3)

White solid (560 mg, 66%); mp 78–79°C; 1H NMR (400 MHz, CDCl3): δ 1.63–1.78 (m, 4H, 2″, 3″-CH2), 2.32 (s, 3H, 2-CH3), 2.82 (t, 2H, 3J = 6.4 Hz, 1″-CH2), 3.69 (t, 2H, 3J = 6.7 Hz, 4″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.92 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 4.96 (s, 2H, 8-CH2), 6.78–6.87 (m, 3H, 6, 2′, 6′-H), 6.93 (d, 1H, 3J = 8.9 Hz, 5′-H), 8.01 ppm (d, 1H, 3J = 8.5 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.38 (2-CH3), 24.88 (2″-C), 30.69 (3″-C), 44.96 (1″-C), 51.59 (10-C), 55.82 (3′-OCH3), 55.83 (4′-OCH3) 62.52 (4″-C), 82.67 (8-C), 106.99 (10a-C), 111.12 (5′-C), 113.60 (2′-C), 114.72 (6-C), 116.91 (4a-C), 122.72 (6′-C), 123.20 (1′-C), 125.21 (5-C), 125.56 (3-C), 148.54, 148.70 (3′, 4′-C), 154.19 (10b-C), 158.16 (2-C), 162.36 (6a-C), 176.46 (4-C) ppm; IR (KBr): νmax 3433, 2934, 2836, 1634, 1607, 1516, 1252, 1170 cm−1; MS (CI): m/z (%) 414.2 (100, MH+-12). Anal. Calcd for C24H27NO6: C, 67.75; H, 6.40; N, 3.29. Found: C, 68.03; H, 6.37; N, 3.68.

3-(3,4-Fimethoxyphenyl)-9-(4-hydroxypentyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4e, n=4)

White solid (676 mg, 77%); mp 160–161°C; 1H NMR (400 MHz, CDCl3): δ 1.41–1.51 (m, 2H, 3″-CH2), 1.58–1.70 (m, 4H, 2″, 4″-CH2), 2.32 (s, 3H, 2-CH3), 2.78 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.67 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.92 (s, 3H, 4′-OCH3), 4.18 (s, 2H, 10-CH2), 4.96 (s, 2H, 8-CH2), 6.79–6.85 (m, 3H, 6, 2′, 6′-H), 6.93 (d, 1H, 3J = 8.8 Hz, 5′-H), 8.00 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.42 (2-CH3), 23.27 (3″-C), 27.80 (2″-C), 32.40 (4″-C), 45.08 (1″-C), 51.62 (10-C), 55.83 (3′-OCH3), 55.85 (4′-OCH3) 65.68 (5″-C), 83.02 (8-C), 107.25 (10a-C), 111.09 (5′-C), 113.56 (2′-C), 114.73 (6-C), 116.83 (4a-C), 122.73 (6′-C), 123.17 (1′-C), 125.11 (5-C), 125.64 (3-C), 148.51, 148.8 (3′, 4′-C), 154.21 (10b-C), 158.38 (2-C), 162.28 (6a-C), 176.47 ppm (4-C); IR (KBr): νmax 3501, 2934, 1628, 1516, 1433, 1251, 1177, 1139 cm−1; MS (CI): m/z (%) 428.2 (100, MH+-12). Anal. Calcd for C25H29NO6: C, 68.32; H, 6.65; N, 3.19. Found: C, 68.07; H, 6.57; N, 3.28.

3-(4-Fluorophenyl)-9-(4-hydroxybutyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4f, n=3)

White solid (710 mg, 93%); mp 149–151°C; 1H NMR (400 MHz, CDCl3): δ 1.60–1.77 (m, 4H, 2″, 3″-CH2), 2.30 (s, 3H, 2-CH3), 2.82 (t, 2H, 3J = 6.4 Hz, 1″-CH2), 3.69 (t, 2H, 3J = 5.5 Hz, 4″-CH2), 4.20 (s, 2H, 10-CH2), 4.97 (s, 2H, 8-CH2), 6.84 (d, 1H, 3J = 8.8 Hz, 6-H), 7.12 (t, 2H, 3J(H,H)= 8.8 Hz, 3J(H,F) = 8.8 Hz, 3′, 5′-H), 7.25 (dd, 2H, 3J(H,H) = 8.8 Hz, 4J(H,F) = 5.4 Hz, 2′, 6′-H), 8.00 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (100 MHz, CDCl3): δ 19.33 (2-CH3), 24.90 (2″-C), 30.69, (3″-C), 44.99 (1″-C), 51.64 (10-C), 62.54 (4″-C), 82.74 (8-C), 107.11 (10a-C), 114.87 (6-C), 115.31 (d, 2J(C,F) = 21.4 Hz, 3′, 5′-C), 116.84 (4a-C), 122.55 (3-C), 125.20 (5-C), 128.91 (d, 4J(C,F) = 3.4 Hz, 1′-C), 132.10 (d, 3J(C,F) = 8.4 Hz, 2′, 6′-C), 154.23 (10b-C), 158.35 (2-C), 162.30 (d, 1J(C,F) = 247.6 Hz, 4′-C), 162.31 (6a-C), 176.21 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −115.20 ppm; IR (KBr): νmax 3459, 2933, 2856, 1633, 1602, 1511, 1438, 1252, 1219 cm−1; MS (CI): m/z (%) 372.1 (100, MH+-12). Anal. Calcd for C22H22FNO4: C, 68.92; H, 5.78; N, 3.65. Found: C, 69.21; H, 5.49; N, 3.91.

3-(4-Fluorophenyl)-9-(4-hydroxypentyl)-2-methyl-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4f, n=4)

White solid (690 mg, 87%); mp 112–113°C; 1H NMR (400 MHz, CDCl3): δ 1.40–1.50 (m, 2H, 3″-CH2), 1.58–1.70 (m, 4H, 2″, 4″-CH2), 2.30 (s, 3H, 2-CH3), 2.77 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.65 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 4.18 (s, 2H, 10-CH2), 4.96 (s, 2H, 8-CH2), 6.83 (d, 1H, 3J = 8.8 Hz, 6-H), 7.12 (t, 2H, 3J(H,H)= 8.3 Hz, 3J(H,F) = 8.3 Hz, 3′, 5′-H), 7.26 (dd, 2H, 3J(H,H) = 8.3 Hz, 4J(H,F) = 5.5 Hz, 2′, 6′-H), 7.99 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 19.34 (2-CH3), 23.26 (3″-C), 27.78 (2″-C), 32.37 (4″-C), 45.05 (1″-C), 51.61 (10-C), 62.59 (5″-C), 83.02 (8-C), 107.30 (10a-C), 114.88 (6-C), 115.30 (d, 2J(C,F) = 21.2 Hz, 3′, 5′-C), 116.68 (4a-C), 122.46 (3-C), 125.05 (5-C), 128.91 (d, 4J(C,F) = 3.2 Hz, 1′-C), 132.08 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 154.22 (10b-C), 158.52 (2-C), 162.25 (d, 1J(C,F) = 246.2 Hz, 4′-C), 162.30 (6a-C), 176.26 ppm; (4-C) 19F NMR (376 MHz, CDCl3): δ −114.95 ppm; IR (KBr): νmax 3505, 2936, 1632, 1510, 1434, 1252, 1222 cm−1; MS (CI): m/z (%) 386.1 (100, MH+-12). Anal. Calcd for C23H24FNO4: C, 69.51; H, 6.09; N, 3.52. Found: C, 69.57; H, 5.89; N, 3.81.

9-(4-Hydroxypentyl)-3-(4-methoxyphenyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4g, n=4)

White solid (380 mg, 41%); mp 114–115°C; 1H NMR (400 MHz, CDCl3): δ 1.41–1.50 (m, 2H, 3″-CH2), 1.56–1.69 (m, 4H, 2″, 4″-CH2), 2.79 (t, 2H, 3J = 6.8 Hz, 1″-CH2), 3.68 (t, 2H, 3J = 6.8 Hz, 5″-CH2), 3.86 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.91 (d, 1H, 3J = 8.9 Hz, 6-H), 6.97 (d, 2H, 3J = 8.7 Hz, 3′, 5′-H), 7.19 (d, 2H, 3J = 8.7 Hz, 2′, 6′-H), 8.00 ppm (d, 1H, 3J = 8.9 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.26 (3″-C), 27.76 (2″-C), 32.40 (4″-C), 44.80 (1″-C), 51.66 (10-C), 55.22 (4′-OCH3), 62.73 (5″-C), 83.38 (8-C), 107.89 (10a-C), 113.68 (3′, 5′-C), 116.25 (6-C), 116.63 (4a-C), 119.51 (q, 1J(C,F) = 277.0 Hz, 2-CF3), 120.93 (3, 1′-C), 125.34 (5-C), 131.05 (2′, 6′-C), 147.56 (q, 2J(C,F) = 35.0 Hz, 2-C), 153.47 (10b-C), 159.77 (4′-C), 159.89 (6a-C), 176.40 ppm (4-C); 19F NMR (376 MHz, DMSO-d6): δ −63.93 ppm; IR (KBr): νmax 3517, 2943, 1646, 1606, 1580, 1430, 1249, 1154, 1026 cm−1; MS (CI): m/z (%) 452.3 (100, MH+-12). Anal. Calcd for C24H24F3NO5: C, 62.20; H, 5.22; N, 3.02. Found: C, 62.12; H, 5.39; N, 2.87.

3-(3,4-Dimethoxyphenyl)-9-(4-hydroxybutyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4h, n=3)

White solid (340 mg, 36%); mp 154–156°C; 1H NMR (400 MHz, CDCl3): δ 1.63–1.78 (m, 4H, 2″, 3″-CH2), 2.82 (t, 2H, 3J = 6.2 Hz, 1″-CH2), 3.71 (t, 2H, 3J = 5.6 Hz, 4″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.93 (s, 3H, 4′-OCH3), 4.22 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.76–6.85 (m, 2H, 2′, 6′-H), 6.90–6.98 (m, 2H, 6, 5′-H), 8.02 ppm (d, 1H, 3J = 9.0 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 24.76 (2″-C), 30.58 (3″-C), 44.73 (1″-C), 51.63 (10-C), 55.81(3′-OCH3), 55.84 (4′-OCH3), 62.58 (4″-C), 83.07 (8-C), 107.69 (10a-C), 110.81 (5′-C), 113.04 (2′-C), 116.29 (6-C), 116.74 (4a-C), 119.47 (q, 1J(C,F) = 277.7 Hz, 2-CF3), 121.17 (3-C), 122.50 (1′-C), 125.51 (6′-C), 125.44 (5-C), 147.73 (q, 2J(C,F) = 35.9 Hz, 2-C), 148.57, 149.44 (3′, 4′-C), 153.44 (10b-C), 159.59 (6a-C), 176.32 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −64.32 ppm; IR (KBr): νmax 3542, 2947, 1653, 1614, 1518, 1117, 1189, 1132 cm−1; MS (CI): m/z (%) 468.2 (100, MH+-12). Anal. Calcd for C24H24F3NO6: C, 60.12; H, 5.05; N, 2.92. Found: C, 60.27; H, 5.32; N, 3.17.

3-(3,4-Dimethoxyphenyl)-9-(4-hydroxypentyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4h, n=4)

White solid (816 mg, 83%); mp 164–166°C; 1H NMR (400 MHz, CDCl3): δ 1.41–1.51 (m, 2H, 3″-CH2), 1.57–1.69 (m, 4H, 2″, 4″-CH2), 2.78 (t, 2H, 3J = 7.4 Hz, 1″-CH2), 3.68 (t, 2H, 3J = 7.4 Hz, 5″-CH2), 3.88 (s, 3H, 3′-OCH3), 3.93 (s, 3H, 4′-OCH3), 4.20 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.78 (d, 1H, 4J = 1.8 Hz, 2′-H), 6.83 (dd, 1H, 3J = 8.3 Hz, 4J = 1.8 Hz, 6′-H), 6.91 (d, 1H, 3J = 8.8 Hz, 6-H), 6.94 (d, 1H, 3J = 8.3 Hz, 5′-H), 8.03 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.23 (3″-C), 27.73 (2″-C), 32.37 (4″-C), 44.76 (1″-C), 51.63 (10-C), 55.77 (3′-OCH3), 55.81 (4′-OCH3), 62.68 (5″-C), 83.37 (8-C), 107.86 (10a-C), 110.75 (5′-C), 112.96 (2′-C), 116.28 (6-C), 116.60 (6′-C), 119.46 (q, 1J(C,F) = 276.0 Hz, 2-CF3), 121.18 (4a-C), 122.47 (1′-C), 125.30 (5-C), 125.36 (3′-C), 147.68 (q, 2J(C,F) = 35.6 Hz, 2-C), 148.52, 149.37 (3′, 4′-C), 153.43 (10b-C), 159.75 (6a-C), 176.34 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −64.30 ppm; IR (KBr): νmax 3542, 2935, 1658, 1612, 1518, 1266, 1215, 1139, 1027 cm−1; MS (CI): m/z (%) 482.2 (100, MH+-12). Anal. Calcd for C25H26F3NO6: C, 60.85; H, 5.31; N, 2.84. Found: C, 61.04; H, 5.57; N, 2.68.

3-(4-Fluorophenyl)-9-(4-hydroxybutyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4i, n=3)

White solid (460 mg, 53%); mp 137–139°C; 1H NMR (400 MHz, CDCl3): δ 1.63–1.78 (m, 4H, 2″, 3″-CH2), 2.83 (t, 2H, 3J = 6.2 Hz, 1″-CH2), 3.70 (t, 2H, 3J = 5.6 Hz, 4″-CH2), 4.22 (s, 2H, 10-CH2), 5.01 (s, 2H, 8-CH2), 6.93 (d, 1H, 3J = 8.8 Hz, 6-H), 7.14 (t, 2H, 3J(H,H)= 8.6 Hz, 3J(H,F) = 8.6 Hz, 3′, 5′-H), 7.24 (t, 2H, 3J(H,H) = 8.6 Hz, 4J(H,F) = 5.2 Hz, 2′, 6′-H), 8.00 ppm (d, 1H, 3J = 8.8 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 24.75 (2″-C), 30.56 (3″-C), 44.74 (1″-C), 51.65 (10-C), 62.58 (4″-C), 83.11 (8-C), 107.78 (10a-C), 115.35 (d, 2J(C,F) = 21.7 Hz, 3′, 5′-C), 116.46 (6-C), 116.67 (4a-C), 119.33 (q, 1J(C,F) = 276.6 Hz, 2-CF3), 124.73 (3-C), 124.80 (d, 4J(C,F) = 3.5 Hz, 1′-C), 125.42 (5-C), 131.66 (d, 3J(C,F) = 8.4 Hz, 2′, 6′-C), 147.87 (q, 2J(C,F) = 36.6 Hz, 2-C), 153.48 (10b-C), 159.75 (6a-C), 163.02 (d, 1J(C,F) = 248.3 Hz, 4′-C), 176.02 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −113.51, −64.30 ppm; IR (KBr): νmax 3410, 2944, 2867, 1658, 1611, 1514, 1435, 1216, 1196, 1142 cm−1; MS (CI): m/z (%) 426.1 (100, MH+-12). Anal. Calcd for C22H19F4NO4: C, 60.41; H, 4.38; N 3.20. Found: C, 60.65; H, 4.71; N, 2.95.

3-(4-Fluorophenyl)-9-(4-hydroxypentyl)-2-(trifluoromethyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (4i, n=4)

White solid (510 mg, 57%); mp 89–90°C; 1H NMR (400 MHz, CDCl3): δ 1.41–1.51 (m, 2H, 3″-CH2), 1.58–1.69 (m, 4H, 2″, 4″-CH2), 2.78 (t, 2H, 3J = 7.2 Hz, 1″-CH2), 3.67 (t, 2H, 3J = 7.2 Hz, 5″-CH2), 4.20 (s, 2H, 10-CH2), 5.00 (s, 2H, 8-CH2), 6.92 (d, 1H, 3J = 8.7 Hz, 6-H), 7.14 (t, 2H, 3J(H,H)= 8.6 Hz, 3J(H,F) = 8.6 Hz, 3′, 5′-H), 7.25 (t, 2H, 3J(H,H) = 8.6 Hz, 4J(H,F) = 5.3 Hz, 2′, 6′-H), 8.00 ppm (d, 1H, 3J = 8.7 Hz, 5-H); 13C NMR (125 MHz, CDCl3): δ 23.26 (3″-C), 27.75 (2″-C), 32.39 (4″-C), 44.78 (1″-C), 51.66 (10-C), 62.70 (5″-C), 83.42 (8-C), 107.95 (10a-C), 115.34 (d, 2J(C,F) = 21.8 Hz, 3′, 5′-C), 116.46 (6-C), 116.55 (4a-C), 119.35 (q, 1J(C,F) = 276.8 Hz, 2-CF3), 124.65 (3-C), 124.83 (d, 4J(C,F) = 3.5 Hz, 1′-C), 125.31 (5-C), 131.66 (d, 3J(C,F) = 8.0 Hz, 2′, 6′-C), 147.82 (q, 2J(C,F) = 34.4 Hz, 2-C), 153.48 (10b-C), 159.93 (6a-C), 163.00 (d, 1J(C,F) = 248.0 Hz, 4′-C), 176.05 ppm (4-C); 19F NMR (376 MHz, CDCl3): δ −113.47, −64.25 ppm; IR (KBr): νmax 3365, 2936, 1656, 1611, 1512, 1437, 1219, 1138 cm−1; MS (CI): m/z (%) 440.1 (100, MH+-12). Anal. Calcd for C23H21F4NO4: C, 61.20; H, 4.69; N, 3.10. Found: C, 61.23; H, 4.87; N, 3.15.

Supplementary Material

ESI

Acknowledgments

DSW and CL were supported by R21 CA139359 and CA172379 from the NIH, by the Office of the Dean of the College of Medicine, and by NIH Grant Number P20 RR020171 from the National Institute of General Medical Sciences to L. Hersh, PI The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH or the NIGMS.

Footnotes

Electronic Supplementary Information (ESI) available: Copies of NMR data for all synthesized compounds and 2D NOESY spectra are available online. See DOI: 10.1039/b000000x/

References

  • 1.Ismail IS, Nagakura Y, Hirasawa Y, Hosoya T, Lazim MIM, Lajis NH, Shiro M, Morita H. J Nat Prod. 2009;72:1879–1883. doi: 10.1021/np9003849. [DOI] [PubMed] [Google Scholar]
  • 2.Zhai S, Senderowicz AM, Sausville EA, Figg WD. Ann Pharmacother. 2002;36:905–911. doi: 10.1345/aph.1A162. [DOI] [PubMed] [Google Scholar]
  • 3.Liu T, Xu Z, He Q, Chen Y, Yang B, Hu Y. Bioorg Med Chem Lett. 2007;17:278– 281. doi: 10.1016/j.bmcl.2006.07.088. [DOI] [PubMed] [Google Scholar]
  • 4.Nguyen TB, Lozach O, Surpateanu G, Wang Q, Retailleau P, Iorga BI, Meijer L, Guéritte F. J Med Chem. 2012;55:2811–2819. doi: 10.1021/jm201727w. [DOI] [PubMed] [Google Scholar]
  • 5.Zhang W, Sviripa V, Chen X, Shi J, Yu T, Hamza A, Ward ND, Kril LM, Vander Kooi CW, Zhan CG, Evers BM, Watt DS, Liu C. ACS Chem Biol. 2013;8:796–803. doi: 10.1021/cb3005353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Tramontini M, Angiolini L. Tetrahedron. 1990;46:1791–1837. [Google Scholar]
  • 7.Tramontini M, Angiolini L. Mannich Bases: Chemistry and Uses. CRC Press; Boca Raton: 1994. [Google Scholar]
  • 8.Bruson HA. J Am Chem Soc. 1936;58:1741–1744. [Google Scholar]
  • 9.Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, Caranfa MJ, McCabe FL, Faucette LF, Johnson RK, Hertzberg RP. J Med Chem. 1991;34:98–107. doi: 10.1021/jm00105a017. [DOI] [PubMed] [Google Scholar]
  • 10.Johnson AL, Davidson MG, Perez Y, Jones MD, Merle N, Raithby PR, Richards SP. Dalton transactions. 2009:5551–5558. doi: 10.1039/b904534a. [DOI] [PubMed] [Google Scholar]
  • 11.Wu JQ, Mu JS, Zhang SW, Li YS. J Polym Sci Part A: Polym Chem. 2010;48:1122–1132. [Google Scholar]
  • 12.Tan X-w, Wang B-m, Wang Y, Zhan S-z. Inorg Chem Commun. 2010;13:1061–1063. [Google Scholar]
  • 13.Burke WJ, Hammer CR, Weatherbee C. J Org Chem. 1961;26:4403–4407. [Google Scholar]
  • 14.Woodgate PD, Horner GM, Maynard NP, Rickard CEF. J Organometallic Chem. 1999;592:180–193. [Google Scholar]
  • 15.Schmidt C, Straub T, Falàbu D, Paulus Erich F, Wegelius E, Kolehmainen E, Böhmer V, Rissanen K, Vogt W. Eur J Org Chem. 2000;2000:3937–3944. [Google Scholar]
  • 16.Iwanek W, Wolff C, Mattay J. Tetrahedron Lett. 1995;36:8969–8972. [Google Scholar]
  • 17.Isanbor C, O’Hagan D. J Fluor Chem. 2006;127:303–319. [Google Scholar]
  • 18.Kirk KL. J Fluor Chem. 2006;127:1013–1029. [Google Scholar]
  • 19.O’Hagan D. J Fluor Chem. 2010;131:1071–1081. [Google Scholar]
  • 20.Sacquet MC, Fargeau-Bellassoued MC, Graffe B. J Heterocycl Chem. 1991;28:667–672. [Google Scholar]
  • 21.Bondarenko SP, Frasinyuk MS, Khilya VP. Chem Nat Compd. 2003;39:344–348. [Google Scholar]
  • 22.Gao H, Nishioka T, Kawabata J, Kasai T. Biosci Biotech Biochem. 2004;68:369–375. doi: 10.1271/bbb.68.369. [DOI] [PubMed] [Google Scholar]
  • 23.Chen L, Hu TS, Zhu J, Wu H, Yao ZJ. Synlett. 2006;2006:1225–1229. [Google Scholar]
  • 24.Ragab FA, Hassan GS, Yossef HA, Hashem HA. Eur J Med Chem. 2007;42:1117–1127. doi: 10.1016/j.ejmech.2007.01.019. [DOI] [PubMed] [Google Scholar]
  • 25.Bondarenko SP, Frasinyuk MS, Khilya VP. Chem Heterocycl Compd. 2010;46:146–150. [Google Scholar]
  • 26.Lee KY, Nam DH, Moon CS, Seo SH, Lee JY, Lee YS. Eur J Med Chem. 2006;41:991–996. doi: 10.1016/j.ejmech.2006.04.008. [DOI] [PubMed] [Google Scholar]
  • 27.Panja SK, Maiti S, Drew MGB, Bandyopadhyay C. Tetrahedron. 2009;65:1276–1280. [Google Scholar]
  • 28.Lee C, Lee JM, Lee NR, Kim DE, Jeong YJ, Chong Y. Bioorg Med Chem Lett. 2009;19:4538–4541. doi: 10.1016/j.bmcl.2009.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Nam DH, Lee KY, Moon CS, Lee YS. Eur J Med Chem. 2010;45:4288–4292. doi: 10.1016/j.ejmech.2010.06.030. [DOI] [PubMed] [Google Scholar]
  • 30.Mouysset G, Payard M, Grassy G, Tronche P, Dabire H, Mouille P, Schmitt H. Eur J Med Chem. 1987;22:539–544. [Google Scholar]
  • 31.Baziard-Mouysset G, Younes S, Labssita Y, Payard M, Caignard DH, Rettori MC, Renard P, Pfeiffer B, Guardiola-Lemaitre B. Eur J Med Chem. 1998;33:339–347. doi: 10.1016/s0223-5234(00)00113-6. [DOI] [PubMed] [Google Scholar]
  • 32.Cavalli A, Bisi A, Bertucci C, Rosini C, Paluszcak A, Gobbi S, Giorgio E, Rampa A, Belluti F, Piazzi L, Valenti P, Hartmann RW, Recanatini M. J Med Chem. 2005;48:7282–7289. doi: 10.1021/jm058042r. [DOI] [PubMed] [Google Scholar]
  • 33.Gobbi S, Cavalli A, Rampa A, Belluti F, Piazzi L, Paluszcak A, Hartmann RW, Recanatini M, Bisi A. J Med Chem. 2006;49:4777–4780. doi: 10.1021/jm060186y. [DOI] [PubMed] [Google Scholar]
  • 34.Hasan SM, Alam MM, Husain A, Khanna S, Akhtar M, Zaman MS. Eur J Med Chem. 2009;44:4896–4903. doi: 10.1016/j.ejmech.2009.08.001. [DOI] [PubMed] [Google Scholar]
  • 35.Park HR, Park KS, Chong Y. Bioorg Med Chem Lett. 2011;21:3202–3205. doi: 10.1016/j.bmcl.2011.04.055. [DOI] [PubMed] [Google Scholar]
  • 36.Chen Y, Cheng M, Liu FQ, Xia P, Qian K, Yu D, Xia Y, Yang ZY, Chen CH, Morris-Natschke SL, Lee KH. Eur J Med Chem. 2011;46:4924–4936. doi: 10.1016/j.ejmech.2011.07.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Fairhurst RA, Heaney H, Papageorgiou G, Wilkins RF, Eyley SC. Tetrahedron Lett. 1989;30:1433–1436. [Google Scholar]
  • 38.Fenton DE, Papageorgiou G. Tetrahedron. 1996;52:5913–5928. [Google Scholar]
  • 39.Heaney H, Papageorgiou G, Wilkins RF. Tetrahedron. 1997;53:14381–14396. [Google Scholar]
  • 40.Fabris F, Lucchi OD, Delogu G, Fabbri D. Synth Commun. 1999;29:2007–2012. [Google Scholar]
  • 41.Astudillo MEA, Chokotho NCJ, Jarvis TC, Johnson CD, Lewis CC, McDonnell PD. Tetrahedron. 1985;41:5919–5928. [Google Scholar]
  • 42.Fulop F, Pihlaja K, Mattinen J, Bernath G. J Org Chem. 1987;52:3821–3825. [Google Scholar]
  • 43.Fülöp F, Dahlqvist M, Pihlaja K. Acta Chem Scand. 1991;45:273–275. [Google Scholar]
  • 44.Fülöp F, Forró E, Bernáth G, Miskolczi I, Vainiotalo P, Martinsen A. J Heterocycl Chem. 1997;34:289–293. [Google Scholar]
  • 45.Lázár L, Fülöp F. Eur J Org Chem. 2003;2003:3025–3042. [Google Scholar]
  • 46.Palkó M, Hetényi A, Fülöp F. J Heterocycl Chem. 2004;41:69–75. [Google Scholar]
  • 47.Tóth D, Szatmári I, Fülöp F. Eur J Org Chem. 2006;2006:4664–4669. [Google Scholar]
  • 48.Pihlaja K, Juhász M, Kivelä H, Fülöp F. Rapid Commun Mass Spectrom. 2008;22:1510–1518. doi: 10.1002/rcm.3528. [DOI] [PubMed] [Google Scholar]
  • 49.Lambert JB, Majchrzak MW. J Am Chem Soc. 1980;102:3588–3591. [Google Scholar]
  • 50.Xiang H, Zhao W, Xiao H, Qian L, Yao Y, Li XB, Liao QJ. Bioorg Med Chem. 2010;18:3036–3042. doi: 10.1016/j.bmc.2010.03.055. [DOI] [PubMed] [Google Scholar]
  • 51.Goto H, Terao Y, Akai S. Chem Pharm Bull. 2009;57:346–360. doi: 10.1248/cpb.57.346. [DOI] [PubMed] [Google Scholar]
  • 52.Yeap GY, Yam WS, Dominiak P, Ito MM. J Mol Struct. 2010;967:25–33. [Google Scholar]
  • 53.Gao GY, Li DJ, Keung WM. Bioorg Med Chem. 2003;11:4069–4081. doi: 10.1016/s0968-0896(03)00397-3. [DOI] [PubMed] [Google Scholar]
  • 54.Kukla AS, Seshadri TR. Indian J Chem. 1963;1:343– 345. [Google Scholar]
  • 55.Salas-Coronado R, Gálvez-Ruiz JC, Guadarrama-Pérez C, Flores-Parra A. Heterocycles. 2003;60:1123–1132. [Google Scholar]
  • 56.Kukharev BF, Stankevich VK, Lobanova NA, Klimenko GR, Sadykov EK. Russ J Org Chem. 2007;43:1027–1029. [Google Scholar]
  • 57.Kykharev BF, Stankevich VK, Klimenko GR, Baranov AN, Baiborodin BA, Malinovich GI, Timofeeva SS. Russ J Appl Chem. 1993;66:1305–1306. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ESI

RESOURCES