Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Mar;3(3):497–500. doi: 10.1002/j.1460-2075.1984.tb01836.x

Resolution of cellular compartments involved in membrane potential changes accompanying IgE-mediated degranulation of rat basophilic leukemia cells.

R Sagi-Eisenberg, I Pecht
PMCID: PMC557376  PMID: 6232134

Abstract

The overall membrane potential of rat basophilic leukemia cells (RBL-2H3) calculated from the transmembrane distribution of the lipophilic, tritium-labelled cation tetraphenyl-phosphonium [( 3H]TPP+) was resolved into its mitochondrial and plasma membrane potential components. Using the mitochondrial uncoupler carbonylcyanide-p-trifluormethoxyphenyl hydrazone (FCCP) which collapses the mitochondrial potential, it was shown that about one third of the overall potential resulted from the mitochondrial contribution. Degranulation of the RBL cells induced by two different IgE-cross-linking agents (specific antigen and anti-IgE antibodies), was accompanied by, and well correlated with, a decrease in the overall potential. However, evaluation of the source of these observed potential changes revealed that the FCCP-insensitive fraction of the overall potential, delta psi P, (representing the plasma membrane potential), was not affected. In contrast, the FCCP-sensitive component due to the mitochondrial potential decreased when receptor cross-linking increased. Thus, the observed decrease in the overall potential is most probably a secondary event in the sequence leading from stimulus to secretion. Indeed, exposure of the RBL cells either to a high external concentration of K+ ions or to a high amount of external TPP+, both causing depolarization, failed to trigger degranulation. It is suggested that the apparent decrease in the measured overall potential is a reflection of the mitochondrial membrane depolarization. The latter is most probably caused by mitochondrial Ca2+ uptake initiated by the increase in the intracellular concentration of Ca2+ which follows cells activation.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E. Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. Biochim Biophys Acta. 1978 May 10;502(2):359–366. doi: 10.1016/0005-2728(78)90056-7. [DOI] [PubMed] [Google Scholar]
  2. BALLENTINE R., BURFORD D. D. Differential density separation of cellular suspensions. Anal Biochem. 1960 Nov;1:263–268. doi: 10.1016/0003-2697(60)90053-1. [DOI] [PubMed] [Google Scholar]
  3. Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981 Apr;11(4):317–323. doi: 10.1002/eji.1830110410. [DOI] [PubMed] [Google Scholar]
  4. Bennett J. P., Cockcroft S., Gomperts B. D. Rat mast cells permeabilized with ATP secrete histamine in response to calcium ions buffered in the micromolar range. J Physiol. 1981 Aug;317:335–345. doi: 10.1113/jphysiol.1981.sp013828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R. J., Brand M. D., Martin B. R. The effect of insulin on plasma-membrane and mitochondrial-membrane potentials in isolated fat-cells. Biochem J. 1981 Apr 15;196(1):133–147. doi: 10.1042/bj1960133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis R. J., Martin B. R. The effect of alpha-adrenergic agonists on the membrane potential of fat-cell mitochondria in situ. Biochem J. 1982 Sep 15;206(3):619–626. doi: 10.1042/bj2060619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eshhar Z., Ofarim M., Waks T. Generation of hybridomas secreting murine reaginic antibodies of anti-DNP specificity. J Immunol. 1980 Feb;124(2):775–780. [PubMed] [Google Scholar]
  8. Felber S. M., Brand M. D. Factors determining the plasma-membrane potential of lymphocytes. Biochem J. 1982 May 15;204(2):577–585. doi: 10.1042/bj2040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foreman J. C., Hallett M. B., Mongar J. L. The relationship between histamine secretion and 45calcium uptake by mast cells. J Physiol. 1977 Sep;271(1):193–214. doi: 10.1113/jphysiol.1977.sp011996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
  11. Gomperts B. D., Baldwin J. M., Micklem K. J. Rat mast cells permeabilized with Sendai virus secrete histamine in response to Ca2+ buffered in the micromolar range. Biochem J. 1983 Mar 15;210(3):737–745. doi: 10.1042/bj2100737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  13. Ishizaka K., Ishizaka T. Identification of gamma-E-antibodies as a carrier of reaginic activity. J Immunol. 1967 Dec;99(6):1187–1198. [PubMed] [Google Scholar]
  14. Ishizaka T., Foreman J. C., Sterk A. R., Ishizaka K. Induction of calcium flux across the rat mast cell membrane by bridging IgE receptors. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5858–5862. doi: 10.1073/pnas.76.11.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanner B. I., Metzger H. Crosslinking of the receptors for immunoglobulin E depolarizes the plasma membrane of rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5744–5748. doi: 10.1073/pnas.80.18.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanno T., Cochrane D. E., Douglas W. W. Exocytosis (secretory granule extrusion) induced by injection of calcium into mast cells. Can J Physiol Pharmacol. 1973 Dec;51(12):1001–1004. doi: 10.1139/y73-153. [DOI] [PubMed] [Google Scholar]
  17. Kiefer H., Blume A. J., Kaback H. R. Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2200–2204. doi: 10.1073/pnas.77.4.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lichtshtein D., Kaback H. R., Blume A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc Natl Acad Sci U S A. 1979 Feb;76(2):650–654. doi: 10.1073/pnas.76.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sagi-Eisenberg R., Pecht I. Membrane potential changes during IgE-mediated histamine release from rat basophilic leukemia cells. J Membr Biol. 1983;75(2):97–104. doi: 10.1007/BF01995629. [DOI] [PubMed] [Google Scholar]
  20. Segal D. M., Taurog J. D., Metzger H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2993–2997. doi: 10.1073/pnas.74.7.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Macrophage membrane potential changes associated with gamma 2b/gamma 1 Fc receptor-ligand binding. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1357–1361. doi: 10.1073/pnas.80.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES