Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Apr;3(4):707–712. doi: 10.1002/j.1460-2075.1984.tb01873.x

SOS mutator effect in E. coli mutants deficient in mismatch correction.

P Caillet-Fauquet, G Maenhaut-Michel, M Radman
PMCID: PMC557415  PMID: 6233141

Abstract

We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.

Full text

PDF
707

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bebenek K., Janion C. Involvement of the mismatch repair system in base analogue-induced mutagenesis. Mol Gen Genet. 1983;191(2):276–281. doi: 10.1007/BF00334826. [DOI] [PubMed] [Google Scholar]
  2. Bourguignon-Van Horen F., Brotcorn A., Caillet-Fauquet P., Diver W. P., Dohet C., Doubleday O. P., Lecomte P., Maenhaut-Michel G., Radman M. Conservation and diversification of genes by mismatch correction and SOS induction. Biochimie. 1982 Aug-Sep;64(8-9):559–564. doi: 10.1016/s0300-9084(82)80087-4. [DOI] [PubMed] [Google Scholar]
  3. Brandenburger A., Godson G. N., Radman M., Glickman B. W., van Sluis C. A., Doubleday O. P. Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13. Nature. 1981 Nov 12;294(5837):180–182. doi: 10.1038/294180a0. [DOI] [PubMed] [Google Scholar]
  4. Caillet-Fauquet P., Defais M. Kinetics of induction of error-prone repair of bacteriophage lambda by temperature shift in an Escherichia coli dnaB mutant. Mol Gen Genet. 1977 Oct 20;155(2):231–234. doi: 10.1007/BF00393165. [DOI] [PubMed] [Google Scholar]
  5. Caillet-Fauquet P., Defais M. Phage yield during W-reactivation of bacteriophage. Mutat Res. 1977 Nov;45(2):161–167. doi: 10.1016/0027-5107(77)90015-x. [DOI] [PubMed] [Google Scholar]
  6. Caillet-Fauquet P., Maenhaut-Michel G. Increased detection of the SOS mutator effect in Escherichia coli mutants deficient in mismatch correction. Biochimie. 1982 Aug-Sep;64(8-9):661–663. doi: 10.1016/s0300-9084(82)80106-5. [DOI] [PubMed] [Google Scholar]
  7. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  8. DEVORET R. INFLUENCE DU G'ENOTYPE DE LA BACT'ERIE H OTE SUR LA MUTATION DU PHAGE LAMBDA PRODUITE PAR LE RAYONNEMENT ULTRAVIOLET. C R Hebd Seances Acad Sci. 1965 Feb 1;260:1510–1513. [PubMed] [Google Scholar]
  9. Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
  10. Dreiseikelmann B., Eichenlaub R., Wackernagel W. The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and lambda DNA on the cleavage by restriction endonuclease MboI from Moraxella bovis. Biochim Biophys Acta. 1979 May 24;562(3):418–428. doi: 10.1016/0005-2787(79)90105-9. [DOI] [PubMed] [Google Scholar]
  11. Foster P. L., Eisenstadt E., Cairns J. Random components in mutagenesis. Nature. 1982 Sep 23;299(5881):365–367. doi: 10.1038/299365a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glickman B. W., Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1063–1067. doi: 10.1073/pnas.77.2.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goze A., Sedgwick S. G. Increased UV-inducibility of SOS functions in a dam-3 mutant of Escherichia coli K12 uvrA. Mutat Res. 1978 Dec;52(3):323–331. doi: 10.1016/0027-5107(78)90171-9. [DOI] [PubMed] [Google Scholar]
  14. Haseltine W. A. Ultraviolet light repair and mutagenesis revisited. Cell. 1983 May;33(1):13–17. doi: 10.1016/0092-8674(83)90329-x. [DOI] [PubMed] [Google Scholar]
  15. Ichikawa-Ryo H., Kondo S. Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J Mol Biol. 1975 Sep 5;97(1):77–92. doi: 10.1016/s0022-2836(75)80023-4. [DOI] [PubMed] [Google Scholar]
  16. JACOB F. Mutation d'un bactériophage induite par l'irradiation des seules bactéries-hotes avant l'infection. C R Hebd Seances Acad Sci. 1954 Feb 8;238(6):732–734. [PubMed] [Google Scholar]
  17. Jones M., Wagner R. N-Methyl-N'-nitro-N-nitrosoguanidine sensitivity of E. coli mutants deficient in DNA methylation and mismatch repair. Mol Gen Genet. 1981;184(3):562–563. doi: 10.1007/BF00352542. [DOI] [PubMed] [Google Scholar]
  18. Lacks S., Greenberg B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol. 1977 Jul;114(1):153–168. doi: 10.1016/0022-2836(77)90289-3. [DOI] [PubMed] [Google Scholar]
  19. LeClerc J. E., Istock N. L. Specificity of UV mutagenesis in the lac promoter of M13lac hybrid phage DNA. Nature. 1982 Jun 17;297(5867):596–598. doi: 10.1038/297596a0. [DOI] [PubMed] [Google Scholar]
  20. Lieb M. A fine structure map of spontaneous and induced mutations in the lambda repressor gene, including insertions of IS elements. Mol Gen Genet. 1981;184(3):364–371. doi: 10.1007/BF00352506. [DOI] [PubMed] [Google Scholar]
  21. Marinus M. G., Morris N. R. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):1143–1150. doi: 10.1128/jb.114.3.1143-1150.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marinus M. G., Morris N. R. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res. 1975 Apr;28(1):15–26. doi: 10.1016/0027-5107(75)90309-7. [DOI] [PubMed] [Google Scholar]
  23. Miller J. H. Carcinogens induce targeted mutations in Escherichia coli. Cell. 1982 Nov;31(1):5–7. doi: 10.1016/0092-8674(82)90398-1. [DOI] [PubMed] [Google Scholar]
  24. Quillardet P., Devoret R. Damaged-site independent mutagenesis of phage lambda produced by inducible error-prone repair. Biochimie. 1982 Aug-Sep;64(8-9):789–796. doi: 10.1016/s0300-9084(82)80130-2. [DOI] [PubMed] [Google Scholar]
  25. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  26. Siegel E. C., Kamel F. Reversion of frameshift mutations by mutator genes in Escherichia coli. J Bacteriol. 1974 Mar;117(3):994–1001. doi: 10.1128/jb.117.3.994-1001.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Siegel E. C. Ultraviolet-sensitive mutator strain of Escherichia coli K-12. J Bacteriol. 1973 Jan;113(1):145–160. doi: 10.1128/jb.113.1.145-160.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skopek T. R., Hutchinson F. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. J Mol Biol. 1982 Jul 25;159(1):19–33. doi: 10.1016/0022-2836(82)90029-8. [DOI] [PubMed] [Google Scholar]
  29. Thomas R., Leurs C., Dambly C., Parmentier D., Lambert L., Brachet P., Lefebvre N., Mousset S., Porcheret J., Szpirer J. Isolation and characterization of new sus (amber) mutants of bacteriophage lambda. Mutat Res. 1967 Nov-Dec;4(6):735–741. doi: 10.1016/0027-5107(67)90082-6. [DOI] [PubMed] [Google Scholar]
  30. Vaccaro K. K., Siegel E. C. The frameshift mutability of polA1 and recA1 derivatives of mutator strains of Escherichia coli. Mutat Res. 1977 Mar;42(3):443–446. doi: 10.1016/s0027-5107(77)80048-1. [DOI] [PubMed] [Google Scholar]
  31. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Witkin E. M., Wermundsen I. E. Targeted and untargeted mutagenesis by various inducers of SOS functions in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):881–886. doi: 10.1101/sqb.1979.043.01.095. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES