Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Apr;3(4):777–783. doi: 10.1002/j.1460-2075.1984.tb01884.x

The structure of the photoreceptor unit of Rhodopseudomonas viridis

W Stark 1,*, W Kühlbrandt 1, I Wildhaber 1, E Wehrli 1, K Mühlethaler 1
PMCID: PMC557426  PMID: 16453515

Abstract

The thylakoid membrane of Rhodopseudomonas viridis contains extensive, regular arrays of photoreceptor complexes arranged on a hexagonal lattice with a repeat distance of ˜130 Å. Single membrane sheets were obtained by mild treatment of the thylakoid fraction with the detergent Triton X-100. Heavy metal shadowing and electron microscopy of isolated thylakoids indicated a strong asymmetry of the membrane, showing a smooth plasmic and a rough exoplasmic side. Fourier processing of rotary-shadowed specimens showed the different surface relief on both sides of the membrane. Structural units on both sides were roughly circular and showed 6-fold symmetry at a resolution close to 20 Å. The structural unit was characterised by a central core that seemed to extend through the membrane, protruding on the exoplasmic side. The core was surrounded by a ring showing 12 subunits on the plasmic side. Rotary-shadowed as well as negatively-stained membranes indicated a handedness of the structure. Treatment of thylakoid vesicles with higher detergent concentrations yielded a fraction of particles showing the same features as Fourier maps of the structural units. The isolated particles therefore appeared to represent structurally intact units of photosynthesis.

Keywords: electron microscopy, image analysis, photoreceptor unit, pigment-protein complex, Rhodopseudomonas viridis

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. H., Clayton R. K. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):87–91. doi: 10.1073/pnas.77.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clayton R. K., Clayton B. J. Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas spheroides. Biochim Biophys Acta. 1972 Dec 14;283(3):492–504. doi: 10.1016/0005-2728(72)90265-4. [DOI] [PubMed] [Google Scholar]
  3. Drews G., Giesbrecht P. Rhodopseudomonas viridis, nov. spec., ein neu isoliertes, obligat phototrophes Bakterium. Arch Mikrobiol. 1966 Mar 31;53(3):255–262. [PubMed] [Google Scholar]
  4. Garcia A., Vernon L. P., Ke B., Mollenhauer H. Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1968 Jan;7(1):326–332. doi: 10.1021/bi00841a041. [DOI] [PubMed] [Google Scholar]
  5. Jacob J. S., Miller K. R. Structure of a bacterial photosynthetic membrane. Isolation, polypeptide composition, and selective proteolysis. Arch Biochem Biophys. 1983 May;223(1):282–290. doi: 10.1016/0003-9861(83)90593-3. [DOI] [PubMed] [Google Scholar]
  6. Jay F., Lambillotte M., Mühlethaler K. Localisation of Rhodopseudomonas viridis reaction centre and light harvesting proteins using ferritin-antibody labelling. Eur J Cell Biol. 1983 Mar;30(1):1–8. [PubMed] [Google Scholar]
  7. Michel H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1982 Jul 5;158(3):567–572. doi: 10.1016/0022-2836(82)90216-9. [DOI] [PubMed] [Google Scholar]
  8. Miller K. R., Jacob J. S. Two-dimensional crystals formed from photosynthetic reaction centers. J Cell Biol. 1983 Oct;97(4):1266–1270. doi: 10.1083/jcb.97.4.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miller K. R. Structure of a bacterial photosynthetic membrane. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6415–6419. doi: 10.1073/pnas.76.12.6415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  11. Park R. B., Biggins J. Quantasome: Size and Composition. Science. 1964 May 22;144(3621):1009–1011. doi: 10.1126/science.144.3621.1009. [DOI] [PubMed] [Google Scholar]
  12. Pucheu N. L., Kerber N. L., García A. F. Isolation and purification of reaction center from Rhodopseudomonas viridis NHTC 133 by means of LDAO. Arch Microbiol. 1976 Sep 1;109(3):301–305. doi: 10.1007/BF00446642. [DOI] [PubMed] [Google Scholar]
  13. Thornber J. P., Cogdell R. J., Seftor R. E., Webster G. D. Further studies on the composition and spectral properties of the photochemical reaction centers of bacteriochlorophyll b-containing bacteria. Biochim Biophys Acta. 1980 Nov 5;593(1):60–75. doi: 10.1016/0005-2728(80)90008-0. [DOI] [PubMed] [Google Scholar]
  14. Wildhaber I., Gross H., Moor H. The control of freeze-drying with deuterium oxide (D2O). J Ultrastruct Res. 1982 Sep;80(3):367–373. doi: 10.1016/s0022-5320(82)80050-6. [DOI] [PubMed] [Google Scholar]
  15. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES