Skip to main content
Springer logoLink to Springer
. 2017 Aug 29;2017(1):201. doi: 10.1186/s13660-017-1473-1

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

Yue-Ying Yang 1,, Wei-Mao Qian 2
PMCID: PMC5575000  PMID: 28932099

Abstract

In this paper, we prove that the double inequalities

αNQA(a,b)+(1α)G(a,b)<TD[A(a,b),G(a,b)]<βNQA(a,b)+(1β)G(a,b),λNAQ(a,b)+(1λ)G(a,b)<TD[A(a,b),G(a,b)]<μNAQ(a,b)+(1μ)G(a,b)

hold for all a,b>0 with ab if and only if α3/8, β4/[π(log(1+2)+2)]=0.5546 , λ3/10 and μ8/[π(π+2)]=0.4952 , where TD(a,b), G(a,b), A(a,b) and NQA(a,b), NAQ(a,b) are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively.

Keywords: Toader mean, geometric mean, Neuman mean

Introduction

For x,y,z0 with xy+xz+yz0 and r(0,1), the symmetric integrals RF(x,y,z) and RG(x,y,z) [1] of the first and second kinds, and the complete elliptic integrals K(r) and E(r) of the first and second kinds are defined by

RF(x,y,z)=120[(t+x)(t+y)(t+z)]1/2dt,RG(x,y,z)=140[(t+x)(t+y)(t+z)]1/2(xt+x+yt+y+zt+z)tdt,K(r)=0π/2[1r2sin2(t)]1/2dt,E(r)=0π/2[1r2sin2(t)]1/2dt,

respectively.

The well-known identities

K(r)=RF(0,1r2,1),E(r)=2RG(0,1r2,1)

were established by Carlson in [1].

Let a,b>0 with ab. Then the Toader mean TD(a,b) [2] and the Schwab-Borchardt mean SB(a,b) [35] are respectively defined by

TD(a,b)=2π0π/2a2cos2(t)+b2sin2(t)dt={2aE(1(b/a)2)/π,a>b,2bE(1(a/b)2)/π,a<b, 1.1

and

SB(a,b)={b2a2cos1(a/b),a<b,a2b2cosh1(a/b),a>b,

where cos1(x) and cosh1(x)=log(x+x21) are the inverse cosine and inverse hyperbolic cosine functions, respectively.

Very recently, Neuman [6] introduced the Neuman mean N(a,b) of the second kind as follows:

N(a,b)=12[a+b2SB(a,b)].

It is well known that the Toader mean TD(a,b), the Schwab-Borchardt mean SB(a,b) and the Neuman mean of the second kind N(a,b) satisfy the identities (see [6, 7])

TD(a,b)=4πRG(a2,b2,0)=1π0[(t+a2)(t+b2)]1/2(a2t+a2+b2t+b2)tdt,SB(a,b)=1/RF(a2,b2,b2)=2/0[(t+a2)(t+b2)(t+b2)]1/2dt,N(a,b)=RG(a2,b2,b2)=140[(t+a2)(t+b2)(t+b2)]1/2(a2t+a2+b2t+b2+b2t+b2)tdt.

Let pR and a,b>0. Then the pth power mean Mp(a,b) is defined by

Mp(a,b)=[(ap+bp)/2]1/p(p0),M0(a,b)=ab. 1.2

We clearly see that Mp(a,b) is symmetric and homogeneous of degree one with respect to a and b, strictly increasing with respect to pR for fixed a,b>0 with ab, and the inequalities

G(a,b)=M0(a,b)<A(a,b)=M1(a,b)<Q(a,b)=M2(a,b)

hold for a,b>0 with ab, where G(a,b)=ab, A(a,b)=(a+b)/2 and Q(a,b)=(a2+b2)/2 are the geometric, arithmetic and quadratic means of a and b, respectively.

In [6], Neuman presented the explicit formula for NQA(a,b)N[Q(a,b),A(a,b)] and NAQ(a,b)N[A(a,b),Q(a,b)] as follows:

NQA(a,b)=12A(a,b)[1+v2+sinh1(v)v], 1.3
NAQ(a,b)=12A(a,b)[1+(1+v2)tan1(v)v] 1.4

and proved that the inequalities

A(a,b)<NQA(a,b)<NAQ(a,b)<Q(a,b) 1.5

hold for a,b>0 with ab, where v=(ab)/(a+b).

Recently, the Toader mean has been the subject of intensive research. In particular, many remarkable inequalities for Toader mean and other related means can be found in the literature [841].

In [42], Vuorinen conjectured that

TD(a,b)>M3/2(a,b)

for all a,b>0 with ab. This conjecture was proved by Qiu and Shen [43], and Barnard et al. [44], respectively, and Alzer and Qiu [45] presented the best possible upper power mean bound for the Toader mean as follows:

TD(a,b)<Mlog2/log(π/2)(a,b)

for all a,b>0 with ab.

Li, Qian and Chu [46] proved that the inequality

αNAQ(a,b)+(1α)A(a,b)<TD(a,b)<βNAQ(a,b)+(1β)A(a,b)

holds for all a,b>0 with ab if and only if α3/4 and β4(4π)/[π(π2)]=0.9573 .

Note that

G(a,b)<TD[A(a,b),G(a,b)]<A(a,b) 1.6

for all a,b>0 with ab.

From inequalities (1.5) and (1.6) we clearly see that

G(a,b)<TD[A(a,b),G(a,b)]<NQA(a,b)<NAQ(a,b)

for all a,b>0 with ab.

The main purpose of this paper is to find the greatest values α, λ and the least values β, μ such that the double inequalities

αNQA(a,b)+(1α)G(a,b)<TD[A(a,b),G(a,b)]<βNQA(a,b)+(1β)G(a,b),λNAQ(a,b)+(1λ)G(a,b)<TD[A(a,b),G(a,b)]<μNAQ(a,b)+(1μ)G(a,b)

hold for all a,b>0 with ab. As applications, we get two new bounds for the complete elliptic integral of the second kind in terms of elementary functions.

Lemmas

In order to prove our main results, we need several lemmas, which we present in this section.

For r(0,1), we clearly see that

K(0+)=E(0+)=π/2,K(1)=+,E(1)=1,

and K(r) and E(r) satisfy the formulas (see[21], Appendix E, pp.474-475)

dK(r)dr=E(r)(1r2)K(r)r(1r2),dE(r)dr=E(r)K(r)r,d[E(r)K(r)]dr=rE(r)1r2.

Lemma 2.1

see [21], Theorem 1.25

For <a<b<+, let f,g:[a,b]R be continuous on [a,b] and differentiable on (a,b), and g(x)0 on (a,b). If f(x)/g(x) is increasing (decreasing) on (a,b), then so are

f(x)f(a)g(x)g(a)andf(x)f(b)g(x)g(b).

If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

see [21], Theorem 3.21(1), Exercise 3.43(11) and Exercise 3.43(29)

  1. The function r[E(r)(1r2)K(r)]/r2 is strictly increasing from (0,1) onto (π/4,1);

  2. The function r[K(r)E(r)]/r2 is strictly increasing from (0,1) onto (π/4,+);

  3. The function r[(2r2)K(r)2E(r)]/r4 is strictly increasing from (0,1) onto (π/16,+).

Lemma 2.3

The function rφ1(r)={2π1r2[2E(r)K(r)]+2r21}/r2 is strictly increasing from (0,1) onto (3/4,1).

Proof

Simple computations lead to

φ1(0+)=34,φ1(1)=1, 2.1
φ1(r)=2πr3γ1(r), 2.2

where

γ1(r)=K(r)3E(r)1r2+π, 2.3
γ1(0+)=0, 2.4
γ1(r)=r3(1r2)3/2(2r2)K(r)2E(r)r4. 2.5

From (2.5) and Lemma 2.2(3) we get

γ1(r)>πr316(1r2)3/2>0. 2.6

Therefore, Lemma 2.3 follows easily from (2.1), (2.2), (2.4) and (2.6). □

Lemma 2.4

The function rφ2(r)=(2r2+1r41)/r2 is strictly decreasing from (0,1) onto (1,2).

Proof

It is easy to verify that

φ2(0+)=2,φ2(1)=1, 2.7
φ2(r)=2(1r41)r31r4<0 2.8

for r(0,1).

Therefore, Lemma 2.4 follows easily from (2.7) and (2.8). □

Lemma 2.5

The function rφ3(r)=[2r2K(r)5E(r)]/1r2 is strictly increasing from (0,1) onto (5π/2,+).

Proof

It is not difficult to verify that

φ3(0+)=52π,φ3(1)=+, 2.9
φ3(r)=r(1r2)3/2[(53r2)K(r)E(r)r2E(r)]. 2.10

From (2.10) and Lemma 2.2(2) together with the monotonicity of E(r) on (0,1) we clearly see that

φ3(r)>r(1r2)3/2[(53r2)×π4π2]=3π4r1r2>0 2.11

for r(0,1).

Therefore, Lemma 2.5 follows from (2.9) and (2.11). □

Lemma 2.6

The function rφ4(r)={2π1r2[2E(r)(1+r2)K(r)]+3r21}/r2 is strictly increasing from (0,1) onto (3/4,2).

Proof

Let ϕ1(r)=2π1r2[2E(r)(1+r2)K(r)]+3r21, ϕ2(r)=r2. Then simple computations give

ϕ1(0+)=ϕ2(0)=0,φ4(r)=ϕ1(r)/ϕ2(r), 2.12
φ4(1)=2, 2.13
ϕ1(r)ϕ2(r)=3+1π1r2[E(r)(1r2)K(r)r2]+1πφ3(r). 2.14

It follows from Lemma 2.2(1), Lemma 2.5 and the function r1r2 strictly decreasing that ϕ1(r)/ϕ2(r) is strictly increasing on (0,1) and

φ4(0+)=limr0+ϕ1(r)ϕ2(r)=34. 2.15

Therefore, Lemma 2.6 follows from Lemma 2.1, (2.12), (2.13) and (2.15) together with the monotonicity of ϕ1(r)/ϕ2(r). □

Lemma 2.7

The function φ5(r)=[3r2+1r21]/r2 is strictly decreasing from (0,1) onto (2,5/2).

Proof

We clearly see that

φ5(0+)=52,φ5(1)=2, 2.16
φ5(r)=(11r2)2r31r2<0 2.17

for r(0,1).

Therefore, Lemma 2.7 follows easily from (2.16) and (2.17). □

Main results

Theorem 3.1

The double inequality

αNQA(a,b)+(1α)G(a,b)<TD[A(a,b),G(a,b)]<βNQA(a,b)+(1β)G(a,b) 3.1

holds for all a,b>0 with ab if and only if α3/8 and β4/[π(log(1+2)+2)]=0.5546 .

Proof

Since G(a,b), TD(a,b) and NQA(a,b) are symmetric and homogenous of degree 1, without loss of generality, we assume that a>b>0 and let r=(ab)/(a+b)(0,1). Then (1.1)-(1.3) lead to

TD[A(a,b),G(a,b)]=2πA(a,b)E(r), 3.2
G(a,b)=A(a,b)1r2,NQA(a,b)=12A(a,b)[1+r2+sinh1(r)r]. 3.3

It follows from (3.2)-(3.3) that

T[A(a,b),G(a,b)]G(a,b)NQA(a,b)G(a,b)=2πε(r)1r212[1+r2+sinh1(r)r]1r2=4πrε(r)2r1r2sinh1(r)+(r1+r22r1r2). 3.4

Let f1(r)=4πrε(r)2r1r2, f2(r)=sinh1(r)+(r1+r22r1r2) and

f(r)=4πrε(r)2r1r2sinh1(r)+(r1+r22r1r2). 3.5

Then simple computations lead to

f1(0+)=f2(0)=0, 3.6
f1(r)f2(r)=2π1r2[2ε(r)κ(r)]+2r212r2+1r41=φ1(r)φ2(r), 3.7

where φ1(r) and φ2(r) are defined as in Lemmas 2.3 and 2.4.

It follows from Lemmas 2.3-2.4 and (3.7) that f1(r)/f2(r) is strictly increasing on (0,1). Then (3.5), (3.6) and Lemma 2.1 lead to the conclusion that f(r) is strictly increasing.

Moreover,

limr0+4πrε(r)2r1r2sinh1(r)+(r1+r22r1r2)=38, 3.8
limr14πrε(r)2r1r2sinh1(r)+(r1+r22r1r2)=4π[π(log(1+2)+2)]. 3.9

Therefore, Theorem 3.1 follows easily from (3.4), (3.8) and (3.9) together with the monotonicity of f(r). □

Theorem 3.2

The double inequality

λNAQ(a,b)+(1λ)G(a,b)<TD[A(a,b),G(a,b)]<μNAQ(a,b)+(1μ)G(a,b) 3.10

holds for all a,b>0 with ab if and only if λ3/10 and μ8/[π(π+2)]=0.4952 .

Proof

Without loss of generality, we assume that a>b>0 and let r=(ab)/(a+b)(0,1). Then from (1.4) we get

NAQ(a,b)=12A(a,b)[1+(1+r2)tan1(r)r]. 3.11

It follows from (3.2), (3.11) and G(a,b)=A(a,b)1r2 that

TD[A(a,b),G(a,b)]G(a,b)NAQ(a,b)G(a,b)2πE(r)1r212[1+(1+r2)tan1(r)r]1r2=[4πrE(r)2r1r2]/(1+r2)tan1(r)+(r2r1r2)/(1+r2). 3.12

Let g1(r)=[4πrE(r)2r1r2]/(1+r2), g2(r)=tan1(r)+(r2r1r2)/(1+r2) and

g(r)=[4πrE(r)2r1r2]/(1+r2)tan1(r)+(r2r1r2)/(1+r2). 3.13

Then simple computations lead to

g1(0+)=g2(0)=0, 3.14
g1(r)g2(r)=2π1r2[2ε(r)(1+r2)κ(r)]+3r213r2+1r21=φ4(r)φ5(r), 3.15

where φ4(r) and φ5(r) are defined as in Lemmas 2.6 and 2.7.

It follows from Lemmas 2.6-2.7 and (3.15) that g1(r)/g2(r) is strictly increasing on (0,1). Then (3.13), (3.14) and Lemma 2.1 lead to the conclusion that g(r) is strictly increasing.

Moreover,

limr0+[4πrε(r)2r1r2]/(1+r2)tan1(r)+(r2r1r2)/(1+r2)=310, 3.16
limr1[4πrε(r)2r1r2]/(1+r2)tan1(r)+(r2r1r2)/(1+r2)=8π(π+2). 3.17

Therefore, Theorem 3.2 follows from (3.12), (3.16) and (3.17) together with the monotonicity of g(r). □

From Theorems 3.1-3.2 we get the following Corollary 3.3 immediately.

Corollary 3.3

Let α=3/8, β=4/[π(log(1+2)+2)]=0.5546 , λ=3/10 and μ=8/[π(π+2)]=0.4952 . Then the double inequalities

14πα[1+r2+sinh1(r)r]+12π(1α)1r2<E(r)<14πβ[1+r2+sinh1(r)r]+12π(1β)1r2,14πλ[1+(1+r2)tan1(r)r]+12π(1λ)1r2<E(r)<14πμ[1+(1+r2)tan1(r)r]+12π(1μ)1r2

hold for all r(0,1).

Results and discussion

In this paper, we provide the sharp bounds for the Toader-type mean in terms of the convex combination of geometric and Neuman means. As applications, we find new bounds for the complete elliptic integral of the second kind.

Conclusion

In the article, we present the optimal convex combination bounds of the geometric and Neuman means for the Toader-type mean, and give several new upper and lower bounds for the complete elliptic integral of the second kind. The given results are the improvements of some previously known results.

Acknowledgements

This research was supported by the Natural Science Foundation of Zhejiang Province under Grant LY13A010004 and the Natural Science Foundation of Zhejiang Broadcast and TV University under Grant XKT-15G17.

Footnotes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Yue-Ying Yang, Email: yyy1008hz@163.com.

Wei-Mao Qian, Email: qwm661977@126.comu.

References

  • 1.Carlson BC. Special Functions of Applied Mathematics. New York: Academic Press; 1977. [Google Scholar]
  • 2.Toader GH. Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 1998;218(2):358–368. doi: 10.1006/jmaa.1997.5766. [DOI] [Google Scholar]
  • 3.Neuman E, Sándor J. On the Schwab-Borchardt mean. Math. Pannon. 2003;14(2):253–266. [Google Scholar]
  • 4.Neuman E, Sándor J. On the Schwab-Borchardt mean II. Math. Pannon. 2006;17(1):49–59. [Google Scholar]
  • 5.Neuman E. Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal. 2011;5(4):601–609. doi: 10.7153/jmi-05-52. [DOI] [Google Scholar]
  • 6.Neuman E. On a new bivariate mean. Aequ. Math. 2014;88(3):277–289. doi: 10.1007/s00010-013-0224-8. [DOI] [Google Scholar]
  • 7.Neuman E. Bounds for symmetric elliptic integrals. J. Approx. Theory. 2003;122(2):249–259. doi: 10.1016/S0021-9045(03)00077-7. [DOI] [Google Scholar]
  • 8.Kazi H, Neuman E. Inequalities and bounds for elliptic integrals. J. Approx. Theory. 2007;146(2):212–226. doi: 10.1016/j.jat.2006.12.004. [DOI] [Google Scholar]
  • 9.Kazi H, Neuman E. Special Functions and Orthogonal Polynomials. Providence: Am. Math. Soc.; 2008. Inequalities and bounds for elliptic integrals II; pp. 127–138. [Google Scholar]
  • 10.Chu Y-M, Wang M-K, Qiu S-L, Qiu Y-F. Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011;2011 [Google Scholar]
  • 11.Chu Y-M, Wang M-K. Inequalities between arithmetic-geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012;2012 [Google Scholar]
  • 12.Chu Y-M, Wang M-K. Optimal Lehmer mean bounds for the Toader mean. Results Math. 2012;61(3-4):223–229. doi: 10.1007/s00025-010-0090-9. [DOI] [Google Scholar]
  • 13.Chu Y-M, Wang M-K, Qiu S-L. Optimal combination bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 2012;122(1):41–51. doi: 10.1007/s12044-012-0062-y. [DOI] [Google Scholar]
  • 14.Hua Y, Qi F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat. 2014;28(4):775–780. doi: 10.2298/FIL1404775H. [DOI] [Google Scholar]
  • 15.Song Y-Q, Jiang W-D, Chu Y-M, Yan D-D. Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 2013;7(4):751–757. doi: 10.7153/jmi-07-68. [DOI] [Google Scholar]
  • 16.Li W-H, Zheng M-M. Some inequalities for bounding Toader mean. J. Funct. Spaces Appl. 2013;2013 [Google Scholar]
  • 17.Sun H, Chu Y-M. Bounds for Toader mean by quadratic and harmonic means. Acta Math. Sci. 2015;35A(1):36–42. [Google Scholar]
  • 18.Hua Y, Qi F. A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 2014;124(4):527–531. doi: 10.1007/s12044-014-0183-6. [DOI] [Google Scholar]
  • 19.Chu Y-M, Wang M-K, Ma X-Y. Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 2013;7(2):161–166. doi: 10.7153/jmi-07-15. [DOI] [Google Scholar]
  • 20.Zhao T-H, Chu Y-M, Zhang W. Optimal inequalities for bounding Toader mean by arithmetic and quadratic means. J. Inequal. Appl. 2017;2017 doi: 10.1186/s13660-017-1300-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Anderson GD, Vamanamurthy MK, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: Wiley; 1997. [Google Scholar]
  • 22. Wang, M-K, Li, Y-M, Chu, Y-M: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. doi:10.1007/s11139-017-9888-3
  • 23.Wang M-K, Chu Y-M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 2017;37B(3):607–622. doi: 10.1016/S0252-9602(17)30026-7. [DOI] [Google Scholar]
  • 24.Chu H-H, Qian W-M, Chu Y-M, Song Y-Q. Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic meas. J. Nonlinear Sci. Appl. 2016;9(5):3424–3432. [Google Scholar]
  • 25.Song Y-Q, Zhao T-H, Chu Y-M, Zhang X-H. Optimal evaluation of a Toader-type mean by power mean. J. Inequal. Appl. 2015;2015 doi: 10.1186/s13660-015-0927-6. [DOI] [Google Scholar]
  • 26.Qian W-M, Song Y-Q, Zhang X-H, Chu Y-M. Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. J. Funct. Spaces. 2015;2015 [Google Scholar]
  • 27.Wang M-K, Chu Y-M, Qiu Y-F, Qiu S-L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011;24(6):887–890. doi: 10.1016/j.aml.2010.12.044. [DOI] [Google Scholar]
  • 28.Chu Y-M, Wang M-K, Qiu Y-F. On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011;2011 [Google Scholar]
  • 29.Wang M-K, Qiu S-L, Chu Y-M, Jiang Y-P. Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 2012;385(1):221–229. doi: 10.1016/j.jmaa.2011.06.039. [DOI] [Google Scholar]
  • 30.Wang M-K, Chu Y-M, Qiu S-L, Jiang Y-P. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 2012;388(2):1141–1146. doi: 10.1016/j.jmaa.2011.10.063. [DOI] [Google Scholar]
  • 31.Chu Y-M, Wang M-K, Qiu S-L, Jiang Y-P. Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 2012;63(7):1177–1184. doi: 10.1016/j.camwa.2011.12.038. [DOI] [Google Scholar]
  • 32.Chu Y-M, Wang M-K, Jiang Y-P, Qiu S-L. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 2012;395(2):637–642. doi: 10.1016/j.jmaa.2012.05.083. [DOI] [Google Scholar]
  • 33.Chu Y-M, Qiu Y-F, Wang M-K. Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 2012;23(7):521–527. doi: 10.1080/10652469.2011.609482. [DOI] [Google Scholar]
  • 34.Wang M-K, Chu Y-M. Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 2013;402(1):119–126. doi: 10.1016/j.jmaa.2013.01.016. [DOI] [Google Scholar]
  • 35.Chu Y-M, Qiu S-L, Wang M-K. Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 2013;43(5):1489–1496. doi: 10.1216/RMJ-2013-43-5-1489. [DOI] [Google Scholar]
  • 36.Wang G-D, Zhang Z-H, Chu Y-M. A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 2014;44(5):1661–1667. doi: 10.1216/RMJ-2014-44-5-1661. [DOI] [Google Scholar]
  • 37.Yang Z-H, Chu Y-M, Zhang W. Accurate approximations for the complete elliptic integral of the second kind. J. Math. Anal. Appl. 2016;438(2):875–888. doi: 10.1016/j.jmaa.2016.02.035. [DOI] [Google Scholar]
  • 38.Yang Z-H, Chu Y-M, Zhang X-H. Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 2017;10(3):929–936. doi: 10.22436/jnsa.010.03.06. [DOI] [Google Scholar]
  • 39.Yang Z-H, Chu Y-M, Zhang W. Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. J. Inequal. Appl. 2016;2016 doi: 10.1186/s13660-016-1113-1. [DOI] [Google Scholar]
  • 40.Yang Z-H, Chu Y-M, Wang M-K. Monotonicity criterion for the quotient of power series with application. J. Math. Anal. Appl. 2015;428(1):587–604. doi: 10.1016/j.jmaa.2015.03.043. [DOI] [Google Scholar]
  • 41.Wang M-K, Wang Z-K, Chu Y-M. An optimal double inequality between geometric and identric means. Appl. Math. Lett. 2012;25(3):471–475. doi: 10.1016/j.aml.2011.09.038. [DOI] [Google Scholar]
  • 42.Vuorinen M. Hypergeometric functions in geometric function theory; Special Functions and Differential Equations; New Delhi: Allied Publ.; 1998. pp. 119–126. [Google Scholar]
  • 43.Qiu S-L, Shen J-M. On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 1997;17(3):1–7. [Google Scholar]
  • 44.Barnard RW, Pearce K, Richards KC. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 2000;31(3):693–699. doi: 10.1137/S0036141098341575. [DOI] [Google Scholar]
  • 45.Alzer H, Qiu S-L. Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 2004;172(2):289–312. doi: 10.1016/j.cam.2004.02.009. [DOI] [Google Scholar]
  • 46.Li J-F, Qian W-M, Chu Y-M. Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015;2015 doi: 10.1186/s13660-015-0800-7. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES