Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Jun;3(6):1403–1407. doi: 10.1002/j.1460-2075.1984.tb01984.x

Heteromultimeric structure of the nitrate reductase complex of Chlamydomonas reinhardii

Antonio R Franco 1,3, Jacobo Cárdenas 2,*, Emilio Fernández 1,3
PMCID: PMC557530  PMID: 16453530

Abstract

The NAD(P)H-nitrate reductase complex (overall-NR) of Chlamydomonas reinhardii exhibits two partial activities: NAD(P)H-cytochrome c reductase (diaphorase) and reduced benzyl viologen-NR (terminal-NR). Mild tryptic digestion of the enzyme complex resulted in the loss of both overall and terminal-NR activities, whereas diaphorase activity remained unaltered. The diaphorase activity of mutant 104 and the terminal-NR activity of mutant 305 of C. reinhardii, which are the sole activities related to NR present in these mutants, responded to tryptic treatment to the same extent as the corresponding activities of the wild enzyme complex. Trypsin disassembled the 220-kd NR native complex by destroying the aggregation capability of the diaphorase subunits without affecting their activity nor molecular size (45 kd). A 67-kd thermostable protein, containing molybdenum co-factor, was also released from trypsin-treated NR. This protein lacked diaphorase and NR activities but was able to reconstitute the overall-NR complex by complementation with untreated diaphorase subunit of mutant 104. Our results support a tetrameric structure for the C. reinhardii NR complex, containing two kinds of subunits.

Keywords: Chlamydomonas reinhardii mutants, nitrate reductase, proteolysis

Full text

PDF
1403

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Coughlan M. P., Betcher-Lange S. L., Rajagopalan K. V. Isolation of the domain containing the molybdenum, iron-sulfur I, and iron-sulfur II centers of chicken liver xanthine dehydrogenase. J Biol Chem. 1979 Nov 10;254(21):10694–10699. [PubMed] [Google Scholar]
  4. De la Rosa M. A. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii. Mol Cell Biochem. 1983;50(1):65–74. doi: 10.1007/BF00225280. [DOI] [PubMed] [Google Scholar]
  5. Fernández E., Cárdenas J. In vitro complementation of assimilatory NAD(P)H-nitrate reductase from mutants of Chlamydomonas reinhardii. Biochim Biophys Acta. 1981 Jan 15;657(1):1–12. doi: 10.1016/0005-2744(81)90125-x. [DOI] [PubMed] [Google Scholar]
  6. Fernández E., Cárdenas J. Regulation of the nitrate-reducing system enzymes in wild-type and mutant strains of Chlamydomonas reinhardii. Mol Gen Genet. 1982;186(2):164–169. doi: 10.1007/BF00331846. [DOI] [PubMed] [Google Scholar]
  7. Garrett R. H., Amy N. K. Nitrate assimilation in fungi. Adv Microb Physiol. 1978;18:1–65. doi: 10.1016/s0065-2911(08)60414-2. [DOI] [PubMed] [Google Scholar]
  8. Ghrir R., Lederer F. Study of a zone highly sensitive to proteases in flavocytochrome b2 from Saccharomyces cerevisiae. Eur J Biochem. 1981 Nov;120(2):279–287. doi: 10.1111/j.1432-1033.1981.tb05701.x. [DOI] [PubMed] [Google Scholar]
  9. Guiard B., Lederer F. The "b5-like" domain from chicken-liver sulfite oxidase: a new case of common ancestral origin with liver cytochrome b5 and bakers' yeast cytochrome b2 core. Eur J Biochem. 1977 Mar 15;74(1):181–190. doi: 10.1111/j.1432-1033.1977.tb11379.x. [DOI] [PubMed] [Google Scholar]
  10. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  11. Howard W. D., Solomonson L. P. Quaternary structure of assimilatory NADH:nitrate reductase from Chlorella. J Biol Chem. 1982 Sep 10;257(17):10243–10250. [PubMed] [Google Scholar]
  12. Johnson J. L., Rajagopalan K. V. Tryptic cleavage of rat liver sulfite oxidase. Isolation and characterization of molybdenum and heme domains. J Biol Chem. 1977 Mar 25;252(6):2017–2025. [PubMed] [Google Scholar]
  13. Lê K. H., Lederer F. On the presence of a heme-binding domain homologous to cytochrome b(5) in Neurospora crassa assimilatory nitrate reductase. EMBO J. 1983;2(11):1909–1914. doi: 10.1002/j.1460-2075.1983.tb01678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tomsett A. B., Garrett R. H. The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics. 1980 Jul;95(3):649–660. doi: 10.1093/genetics/95.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang C. S., Raper J. R. Isozyme patterns and sexual morphogenesis in Schizophyllum. Proc Natl Acad Sci U S A. 1970 Jul;66(3):882–889. doi: 10.1073/pnas.66.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamaya T., Solomonson L. P., Oaks A. Action of Corn and Rice-inactivating Proteins on a Purified Nitrate Reductase from Chlorella vulgaris. Plant Physiol. 1980 Jan;65(1):146–150. doi: 10.1104/pp.65.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zabin I., Villarejo M. R. Protein complementation. Annu Rev Biochem. 1975;44:295–313. doi: 10.1146/annurev.bi.44.070175.001455. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES